Methodological Aspects of Linear Analysis of Vegetation Cover Nonlinear Structure

Authors

DOI:

https://doi.org/10.32999/ksu1990-553X/2023-19-2-2

Keywords:

linearization, method, ordination, representativeness of the sample, synphytoindication, syntaxa, the mean value, vegetation.

Abstract

Question: How to apply linearization in vegetation science on the example of using the method of synphytoindication to assess the conditions of plant communities existence. Locations: Carpathians, Shatsk National Nature Park, Slovechansko- Ovruchsky Ridge, Cherkasy-Chyhyryn Geobotanical District, Kyiv Forest Plateau, Central Podilsky Geobotanical District, Dniester Canyon, Krasna River Basin, Mountain Crimea. Methods: For the analysis, we used generally accepted biometric statistical methods, as well as original author's methods. Nomenclature: POWO 2023 Results: Linearization is a method of simplifying complex nonlinear relationships to linear forms of a certain type. This is one of the effective approaches to assessing the nonlinear structure, behavior, modeling, and forecasting the development of phytocenoses based on modern mathematical approaches and methods. From a methodological point of view, linearity could be interpreted as a projection of a non-linear structure from a multidimensional space onto planes on which lines have a certain shape, length and direction, that is, vectorization. At the same time, there are problems regarding the adequacy of displaying the results and not distorting the essence, which requires checking the results by different methods of calculations and different representativeness of the data, as well as finding limits. The paper gives examples of linearization from various areas of phytocenology. When evaluating the representativeness of the sample of relevés of alliances for phytoindication by different calculation methods, we found that the use of 30 relevés from different associations gives reliable results, and the reliability is high when using 50 relevés. Step-by-step manipulation of average values, in the comparative analysis of the syntaxonomic composition at the landscape or regional level, that is, the assessment of β, γ-diversity increases the level of reliability of approximation and visualization. Analysis examples of the complex character of the correlations between the ecological indicators shows that in some cases qualitative changes occur outside the critical limits, at the bifurcation points, which indicates the need to take into account the limiting values when developing prognostic models. Conclusions: We concluded that the reliability of the results obtained by only one method is not reliable enough, but needs to be checked by another calculation method or evaluation of another sample of data. The given examples testify to the perspective of the linearization approach in geobotanical research.

References

Avriel, M. (2003). Nonlinear Programming: Analysis and Methods. Dover Publishing. 544 p.

Boothby, W. (1984). Some comments on global linearization of nonlinear systems. Systems & Control Letters, 4(3): 143–147.

Brockett, R.W. (1978). Feedback invariants for nonlinear systems. IFAC Proceedings Volumes 11(1): 1115–1120.

Cheng, D., Hu, X. & Shen, T. (2010). Linearization of Nonlinear Systems. In: Analysis and Design of Nonlinear Control Systems. Springer, Berlin, Heidelberg: 279–313. https://doi.org/10.1007/978-3-642-11550-9_10

Dengler J., Hüllbusch E., Biţă-Nicolae C., Chytrý M., Didukh Y.P., Diekmann M., Dierschke H., Englisch T., Ermakov N., Feldhaar H., Fosaa A.M., Frank D., Gillet F., Guarino R., Hennekens S. M., Hill M.O., Sven D.J., Jíménez-Alfaro B., Julve Ph., Kącki Z., Karrer G., Nobis M.-P., Ozinga Wim A., Pignatti S., Raus T., Řezníčková M., Ruprecht E., Šilc U., Steinbauer M. J., Theurillat J.-P., Tichý L. & Jansen F. (2016). Ecological Indicator values of Europe (EIVE) 1.0: a powerful open-access tool for vegetation scientists. In: Oral presentation and abstract of the 25th European Vegetation Survey Meeting 6-9 April 2016 in Rome, IT.

Didukh, Ya.P. & Plyuta, P.H. (1994). The phytoindication of ecological factors. Kyiv: Naukova Dumka, 280 p. (in Ukrainian)

Didukh, Y.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre, 176 p. (in Ukrainian)

Didukh, Ya.P. (2012). Fundamentals of Bioindication. Kyiv: Naukova Dumka, 344 p. (in Ukrainian)

Didukh, Y., Kontar, I. & Boratynski, A. (2018). Phytoindicating Comparison of Vegetation of the Polish Tatras, the Ukrainian Carpathians, and the Mountain Crimea. Springer, Geobotany Studies: 185–210. https://doi.org/10.1007/978-3-319-68738-4_9

Didukh, Ya.P. (2021). Climate Change Assessment Based on Synphytoindication Method. In: Lackner M., Sajjadi B., Chen W.Y. (eds). Handbook of Climate Change Mitigation and Adaptation. New York: Springer: 1−56. https://doi.org/10.1007/978-1-4614-6431-0_137-1

Dwyer, R.L. & Perez, K.T. (1983). An experimental examination of ecosystem linearization. The American Naturalist: 121(3): 305−323. http://www.jstor.org/stable/2461152

Elith, J. & Leathwick, J.R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics 40(1): 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159. ISSN 1543-592X

Fitsailo, T.V., Pashkevich, N.A., Mala, Y.I. & Didukh, Y.P. (2012). Ecological Differentiation of Biotopes of Shatsky NNP. Pryroda Zakhidnoho Polissya ta prylehlykh terytoriy: zb. nauk. pr. Volyn. nats. un-t im. Lesi Ukrainky. Redkol.: F.V. Zuzuk ta in. Lutsk 9: 276–283. (in Ukrainian)

Hayova, Yu.Yu. (2005). The ecologic and coenotical specifics of the forests of the Cherkasko-Chihyrynsky geobotany district. Ukrainian Botanical Journal 6(1): 29–39. (in Ukrainian)

Hill, M.O. & Gauch, H.G. (1980). Detrended correspondence analysis. an improved ordination technique. Vegetatio 42: 47–58.

Honcharenko, I.V. (2003). Vegetation of Pidlisnivskiy reserve (Sumy region) and its phytoindicational analysis. Ukrainskyi fitotsenotychnyi zbirnyk. Seriya S. Fitoekolohiya 1(20): 98–102. (in Ukrainian)

Honcharenko, I.V. (2017). Phytoindication of anthropogenic factor. Ed. I.V. Honcharenko. Dnipro: Serednyak T.K., 127 s. (in Ukrainian)

Iemelianova, S.M. & Kuzemko A.A. (2016). National phytosociological database of Ukraine (UKRVEG): the relevance of creation and problems of development. Classification of vegetation and habitats of Ukraine as a scientific basis for biodiversity conservation: the Second Ukrainian Scientific-theoretical Conference proceedings (Kyiv, 14–15th of March, 2016). Kyiv, 2017: 24–37. (in Ukrainian)

Isidori, A. (1989). Nonlinear Control Systems: An Introduction, 2nd ed., Springer, Berlin, 519 p. Nijmeijer H. & van der Shaft, A.J. (1990). Nonlinear Dynamical Control Systems, Springer, Berlin, 467 p.

Krener, A.J. (1973). On the equivalence of control systems and the linearization of nonlinear systems. SIAM Journal on Control 11: 670–676.

Khomyak, I.V. (2010). Classification and anthropogenic transformation of Slovechansko-Ovruchsky ridge ecosystems. Cand. Sci. Abstract. Kyiv, Instytut ahroekolohii UAAN, 20 p. (in Ukrainian)

Liubishchiev, O. (1923). Izvestiya biologicheskogo NII pri Permskom universitete 2(3): 99–110.

Mayr, E. (1974). Populations, species and evolution. Cambridge: Harvard Univ. Press, 453 p.

Mirkin, B.M., Rozenberg, G.S. (1978). Fytotsenolohyya: Pryntsypy y metody. Eds. B.M. Mirkin, G.S. Rozenberg. Moskva, Nauka, 212 p.

Mіrkіn, B.M., Naumova, L.H. (2017). Vvedenye v sovremennuyu nauku o rastytelnosty. Moskva: HEOS, 280 pp. (in rusian)

Mucina, L., Bültmann, H., Dierßen, K. Theurillat, J.-P.,Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., Gavilán García, R., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniëls, F.J.A., Bergmeier, E., Santos Guerra, A., Ermakov, N., Valachovič, M., Schaminée, J.H.J., Lysenko, T., Didukh, Y.P., Pignatti, S., Rodwell, J.S., Capelo, J., Weber, H.E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Hennekens, S.M., Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19(1): 1–783. https://doi.org/10.1111/avsc.12257

Patten, B.C. (1975). Ecosystem linearization: an evolutionary design problem. The American Naturalist 109(969): 529–539.

Respondek, W. (2002). Introduction to geometric nonlinear control; linearization, observability and decoupling. Ed. A. Agrachev. Mathematical Control Theory 1, 169 – 222.

Rokytskyi, P.F. (1973). Byolohycheskaya statystyka. Moskva, Vysshaya shkola, Yzd. 3-e. 320 s.

Snyman, J.A. (2005). Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer Publishing. New York, 257 p. ISBN 0-387-24348-8

Theurillat, J.-P., Willner, W., Fernándes-González F., Bültman H., Čarni A., Gigante D., Mucina L. & Weber H. (2020). International Code of Phytosociological Nomenclature. 4th edition. Applied Vegetation Science. https://doi.org/10.1111/avsc.12491

Tsyganov, D.N. (1983). Fitoindikatsiya ekologicheskikh rezhimov v podzone khvoino-shirokolistvennykh lesov. Moskva, Nauka. 196 p.

Westphal, L.C. (2001). Linearization methods for nonlinear systems. In: Handbook of Control Systems Engineering. Springer Science+Business Media, New York, 745–806 p.

Whittaker, R.H. (1967). Gradient analysis of vegetation. Biological Reviews 49: 207–264.

Whittaker, R.H. (ed). (1975). Handbook of vegetation science. Pt. 5. Ordination and classification of vegetation. Hague: Dr. W. Junk B.V., 737 s.

Published

2022-06-30

How to Cite

DIDUKH, Y. P., VASHENIAK, Y. A., ROSENBLIT, Y. V., CHUSOVA, O. O., & KUZEMKO, A. A. (2022). Methodological Aspects of Linear Analysis of Vegetation Cover Nonlinear Structure. CHORNOMORSKI BOTANICAL JOURNAL, 19(2), 169–186. https://doi.org/10.32999/ksu1990-553X/2023-19-2-2