Ecological differentiation of calcareous vegetation across the lowlands and foothills of Ukraine
DOI:
https://doi.org/10.32999/ksu1990-553X/2025-21-4-3Keywords:
biodiversity, differentiation, environmental parameters, statistical analysis, vascular plantsAbstract
Question. What environmental parameters drive the differentiation of calcareous vegetation? Location. Calcareous rocks and outcrops in the lowland regions of Ukraine and adjacent foothill areas within 48.3–50.5 °N and 23.8– 38.2 °E. Methods. A database comprising 1704 phytosociological relevés of calcareous vegetation was compiled, of which 1512 were selected and classified using expert systems and the k-means method. Environmental differentiation was assessed based on geomorphological parameters and ecological indicator values ECODID. DCA ordination was applied to identify the parameters that significantly influence the structure of calcareous vegetation. In addition, univariate analyses of syntaxa distributions were performed, accompanied by boxplots to identify homogeneous groups and evaluate the significance of each environmental parameter. Nomenclature. Euro+Med PlantBase (https://europlusmed.org), Hodgetts et al. 2020, Index Fungorum (https://indexfungorum.org), Mucina et al. 2016, Didukh et al. 2018, Didukh et al. 2021, Vynokurov 2021. Results. Statistical analysis revealed that the primary environmental parameters determining the differentiation of calcareous vegetation are soil moisture and calcium carbonate content. These factors influence other key environmental characteristics, including soil acidity, total salt regime, and aeration. The vegetation communities, although strongly dependent on local microclimatic conditions, are also sensitive to regional macroclimatic factors. Additionally, elevation above sea level and slope steepness were found to affect environmental differentiation significantly. Conclusions. Calcareous vegetation is shaped by significant substrate heterogeneity and by the interactions among local and regional environmental drivers, resulting in pronounced environmental differentiation. The reliance on unique calcareous and gypsum substrates, together with specialised microhabitats, highlights the high vulnerability of these communities and underscores the need to prioritise their conservation.
References
Borcard, D., Gillet, F. & Legendre, P. (2018). Numerical Ecology with R. Cham: Springer International Publishing. 435 p.
Borcard, D. & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.
Cazzavillan, A., Gerdol, R., Marrocchino, E., Vaccaro, C. & Brancaleoni, L. (2024). Fine-scale lithogeochemical features influence plant distribution patterns in alpine grasslands in the Western Alps of Italy. Plants 13: 2280. https://doi.org/10.3390/plants13162280
Chytrý, M., Tichý, L., Holt, J. & Botta‐Dukát, Z. (2002). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science 13: 79–90.
Chytrý, M. (ed.) (2007). Vegetation of the Czech Republic 1. Grassland and heathland vegetation. Praha: Academia. 528 pp. (in Czech)
Cross, A.T. & Lambers, H. (2021). Calcicole–calcifuge plant strategies limit restoration potential in a regional semi‐arid flora. Ecology and Evolution 11: 6941–6961. https://doi.org/10.1002/ece3.7544
Didukh, Y.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre. 176 p.
Didukh, Y., Chusova O., & Demina, O. (2018). Syntaxonomy of chalk outcrop vegetation of the order Thymo cretacei-Hyssopetalia cretacei. Hacquetia 17: 85–109. https://doi.org/10.1515/hacq-2017-0013
Didukh, Y., Vasheniak, I., & Chusova, O. (2021). Stipo pulcherrimae-Festucetalia pallentis Pop 1968 of calcareous petrophytic steppes in Ukraine. Hacquetia 20: 303–325. https://doi.org/10.2478/hacq-2021-0004
Hinterlang, D. (2017). Synopsis der Pflanzengesellschaften Deutschlands. Heft 12. Montio-Cardaminetea (C6) Quell- und Waldsumpfgesellschaften. Floristisch-soziologischen Arbeitsgemeinschaft, Göttingen.
Hodgetts, N.G., Söderström, L., Blockeel, T.L., Caspari, S., Ignatov, M.S., Konstantinova, N.A., Lockhart, N., Papp, B., Schröck, C., Sim-Sim, M., Bell, D., Bell, N.E., Blom, H.H., Bruggeman-Nannenga, M.A., Brugués, M., Enroth, J., Flatberg, K.I., Garilleti, R., Hedenäs, L., Holyoak, D. T., Hugonnot, V., Kariyawasam, I., Köckinger, H., Kučera, J., Lara, F. & Porley, R.D. (2020). An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology 42: 1–116. https://doi.org/10.1080/03736687.2019.1694329
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.
Kruskal, W.H. & Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583–621.
Larson, D.W., Kelly, P.E. & Matthes, U. (2000). Cliff ecology: pattern and process in cliff ecosystems. Cambridge: Cambridge University Press, 340 p.
Legendre, P. & Legendre, L. (2012). Numerical Ecology. 3rd English edition. Amsterdam: Elsevier. 990 pp.
Lichter-Marck, I.H. & Baldwin, B.G. (2023). Edaphic specialization onto bare, rocky outcrops as a factor in the evolution of desert angiosperms. Proceedings of the National Academy of Sciences of the United States of America 120: e2214729120. https://doi.org/10.1073/pnas.2214729120
Mann, H.B. & Whitney, D.R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18: 50–60.
McCune, B. & Grace, J.B. (2002). Analysis of Ecological Communities. MjM Software Design. Oregon: Gleneden Beach (OR), 300 p.
Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., García, R. G., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniëls, F.J.A., Bergmeier, E., Santos Guerra, A., Ermakov, N., Valachovič, M., Schaminée, J.H.J., Lysenko, T., Didukh, Y.P., Pignatti, S., Rodwell, J.S., Capelo, J., Weber, H.E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Hennekens, S.M. & Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19: 3–264. https://doi.org/10.1111/avsc.12257
Nicklas, L., Walde, J., Wipf, S., Lamprecht, A., Mallaun, M., Rixen, C., Steinbauer, K., Theurillat, J.-P., Unterluggauer, P., Vittoz, P., Moser, D., Gattringer, A., Wessely, J. & Erschbamer, B. (2021). Climate change affects vegetation differently on siliceous and calcareous summits of the European Alps. Frontiers in Ecology and Evolution 9: 1–15. https://doi.org/10.3389/fevo.2021.642309
Peterka, T., Hájková, P., Jiroušek, M., Hinterlang, D., Chytrý, M., Aunina, L., Deme, J., Lyons, M., Seiler, H., Zechmeister, H., Apostolova, I., Beierkuhnlein, C., Bischof, M., Biţă-Nicolae, C., Brancaleoni, L., Ćušterevska, R., Dengler, J., Didukh, Y., Dítě, D., Felbaba-Klushyna, L., Garbolino, E., Gerdol, R., Iemelianova, S., Jansen, F., Juutinen, R., Kamberović, J., Kapfer, J., Klímová, B., Knollová, I., Kolari, T.H.M., Lazarević, P., Luostarinen, R., Mikulášková, E., Milanović, Đ., Miserere, L., Moeslund, J. E., Molina, J. A., Pérez-Haase, A., Petraglia, A., Puglisi, M., Ruprecht, E., Šmerdová, E., Spitale, D., Tomaselli, M., Vassilev, K. & Hájek, M. (2023). Formalized classification of the class Montio-Cardaminetea in Europe: towards a consistent typology of spring vegetation. Preslia 95: 347–https://doi.org/383. 10.23855/preslia.2023.347
Piepho, H.-P. (2004). An algorithm for a letter-based representation of all-pairwise comparisons. Journal of Computational and Graphical Statistics 13: 456–466.
Rudenko, L. (2007). National Atlas of Ukraine. Kyiv: Cartography. 440 pp. (in Ukrainian).
Sakin, E. & Hanardag, I.H. (2024). The advantages and disadvantages of calcareous soils. Agricultural Research Updates 45: 147–162.
Soil Resources, Management and Conservation Service & FAO (1990). Management of gypsiferous soils. Rome: Food and Agriculture Organization of the United Nations. 154 p.
Stojanović, J., Jenačković Gocić, D., Kuzmanović, N., Zlatković, B., Lakušić, D. & Jušković, M. (2025). The rock-dwelling vegetation of the western Stara Planina mountains in Serbia. Plant Biosystems: An International Journal Dealing with all Aspects of Plant Biology 159: 387–404. https://doi.org/10.1080/11263504.2025.2472750
Świerkosz, K. (2004). Notes on the syntaxonomy of the Asplenietea trichomanis class in Poland. Polish Botanical Journal 49 (2): 203–213.
Tichý, L. & Chytry, M. (2006). Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science 17: 809–818.
Tichý, L., Chytrý, M., Hájek, M., Talbot, S.S. & Botta-Dukát, Z. (2010). OptimClass: Using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities. Journal of Vegetation Science 21: 287–299.
Tyler, G. (1992). Inability to solubilize phosphate in limestone soils–key factor controlling calcifuge habit of plants. Plant Soil 145: 65–70.
Tyler, G. (1996). Soil chemistry and plant distributions in rock habitats of southern Sweden. Nordic Journal of Botany 16: 609–635.
Tyler, G. (2003). Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour – contribution to a debate. Folia Geobotanica 38: 419–428.
Vasheniak, I., Willner, W., Didukh, Y., Prylutskyi, O. & Chytrý, M. (2024). Vegetation of annuals and succulents on dry calcareous substrates (Alysso alyssoidis-Sedion) in eastern Central Europe, western Ukraine and Moldova. Tuexenia 44: 103–130. https://doi.org/10.14471/2024.44.006
Volik, O.V. (2007). Morfological features and classification of travertine formations in Podillia. Fizychna heohrafiya. Naukovi zapysky 1: 41–44.
Vynokurov, D. (2021). New and validated names of some syntaxa of the Festuco-Brometea class vegetation from Eastern Europe. Chornomorski Botanical Journal 17: 76–80. https://doi.org/10.32999/ksu1990-553X/2021-17-1-5
Zelený, D. (2018). Which results of the standard test for community–environment relationships are trustworthy? Journal of Vegetation Science 29: 1082–1092. https://doi.org/10.1111/jvs.12688



