First year of floodplain forest restoration at the bottom of the former Kakhovka reservoir
DOI:
https://doi.org/10.32999/ksu1990-553X/2024-20-3-5Keywords:
biodiversity, monitoring plots, willow and poplar thickets, war, UkraineAbstract
Question: How did the floodplain forests develop at the bottom of the former Kakhovka reservoir during the first year of their existence? Location: Kakhovka Reservoir, Kherson and Zaporizhzhia regions, Ukraine Materials and methods: field research, vegetation sampling with biodiversity plot methodology (Dengler et al. 2016), biomass and size measurement (Pérez-Harguindeguy et al. 2016) Nomenclature: POWO 2024, Mucina et al. 2016, Dubyna et al. 2019, Guiry & Guiry 2024 Results: On the territory of the former Kakhovka reservoir, six nested plot series were established in the thickets dominated by willows and poplars. Salix × rubens is the most common species in the overgrowth of the former Kakhovka reservoir land. The average density of S. × rubens seedlings in the first weeks of their formation reached 90 individuals per 1 m2. In the autumn of 2023, it decreased by 4 times, but their cover increased by dozens times. This was due to the extremely rapid growth of S. × rubens – in the first year the growth rate was about 2.3 cm per day. In autumn, the average height of the willow thickets was about 2 m, with a maximum measured height of 3,09 m. At the same time, branching was observed on some shoots, which is identified as an imature stage of development. In the second year, S. × rubens individuals enter the virgin stage, when the height of willows in moist, rich conditions averaged almost 3,5 m and reached a maximum of 4,7 m. The development of Populus nigra, which mostly grows on dry sandy sediments, is slower and the height and branching of shoots are lower. In the first year, the biomass of S. × rubens exceeded the known values for three-year-old energy willow. A total of 87 species, included 79 – vascular plants, 6 – algae and 2 – mosses were recorded in the six monitoring plots. The average number of species in the annual community was 28 plant species per 100 m2. Conclusions: Our field studies have shown that habitat type G1.11 Riverine Salix woodland, which is protected under Resolution 4 of the Bern Convention and has a high conservation, ecological, economic and recreational value, was forming extremely rapidly and on a large area on the bottom of the former Kakhovka reservoir. This raises the question of the economic feasibility, morali-ty and legality of the possible destruction of this habitat in the event of the future reconstruction of the Kakhovka reservoir, as such proposals are not only con-stantly being voiced from various sides, but also certain decisions are being made at the level of the Ukrainian government without any analysis of possible alternatives, thorough calculation of environmental consequences and economic justification.
References
Abrahamson, L.P., Robison, D.J., Volk, T.A., White, E.H., Neuhauser, E.F., Benjamin, W.H. & Peterson, J.M. (1998). Sustainability and environmental isssues associated with willow bioenergy development in New York (U.S.A.). Biomass and Bioenergy 15 (1): 17–22. https://doi.org/10.1016/S0961-9534(97)10061-7 Ali, M.B., Tripathi, R.D., Rai, U.N., Pal, A. & Singh, S.P. (1999). Physico-chemical characteristics and pollution level of lake Nainital (U.P., India): role of macrophytes and phytoplankton in biomonitoring and phytoremediation of toxic metal ions. Chemosphere 39 (12): 2171– 2182. https://doi.org/10.1016/S0045-6535(99)00096-X Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai, U.N., Singh, S.N. & Singh, S.P. (2003). Phytoremediation of Lead, Nikel, and Copper by Salix acmophylla Boiss.: Role of antioxidant enzymes and antioxidant substances. Bulletin of Environmental Contamination and Toxicology 70: 462–469. https://doi.org/10.1007/s00128-003-0009-1 Amitabh, N.B. (2016). Economic importance of Salix to the Ecosystem. Global Journal of Wood Science, Forestry and Wildlife 4 (3): 134–138. http://www.globalscienceresearchjournals.org/
Aronsson, P. & Perttu, K. (2001). Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. The Forestry Chronicle 77 (2): 293–299. https://doi.org/10.5558/tfc77293-2 Belyaeva, I.V. (2009). Nomenclature of Salix fragilis L. and a new species S. euxina (Salicaceae). Taxon 58: 1344-1348. https://doi.org/10.1002/tax.584021 Berg, A. (2002). Breeding birds in short-rotation coppices on farmland in central Sweden – the importance of Salix height and adjacent habitats. Agriculture, Ecosystems & Environment 90: 265–276. https://doi.org/10.1016/S0167-8809(01)00212-2 Bischoff, H.W. & Bold, H.C. (1963). Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publication 6318: 1–95. Borsukevych, L.M. (2023). Protection and sustainab le use of floodplain forests of Ukraine by using the habitat concept of nature conservation. Scientific Bulletin of UNFU 33 (3): 13–18. https://doi.org/10.36930/40330302 Carlson, M. (1950). Nodal adventitious roots in willow stems of different ages. American Journal of Botany 37: 555–561. https://doi.org/10.2307/2438033 Ceulemans, R., McDonald, A.J.S. & Pereira, J. S. (1996). A comparison among eucalypt, poplar and willow characteristics with particular reference to a coppice, growth-modelling approach. Biomass and Bioenergy 11 (2/3): 215–231. https://doi.org/10.1016/0961-9534(96)00035-9 Christersson, L., Sennerby-Forsse, L. & Zsuffa, L. (1993). The role and significance of woody biomass plantation in Swedish agriculture. The Forestry Chronicle 69 (6): 687–693. https://doi.org/10.5558/tfc69687-6 Demo, M., Attila Bako, A., Húska, D. & Hauptvogl, M. (2013). Biomass production potential of different willow varieties (Salix spp.) grown in soil-climatic conditions of south-western Slovakia. Wood Research 58 (4): 651–662. Dengler, J., Boch, S., Filibeck, G., Chiarucci, A., Dembicz, I., Guarino, R., Henneberg, B., Janišová, M., Marcenò, C., Naqinezhad, A., Polchaninova, N., Vassilev, K. & Biurrun, I. (2016). Assessing plant diversity and composition in grasslands across spatial scales: the standardised EDGG sampling methodology. Bulletin of the Eurasian Dry Grassland Group 32: 13−30. https://doi.org/10.21570/EDGG.PG.49.22-26 De Vries, M.G. (2001). Conservation of natural ecosystems of poplar and willow. The Forestry Chronicle 77 (2): 255–257. https://doi.org/10.5558/tfc77255-2 Dickinson, N.M., Punshon, T., Hodkinson, R.B. & Lepp, N.W. (1994). Metal tolerance and accumulation in willows. In P. Aronsson and K. Perttu (eds): Willow Vegetation Filters for Municipal Wastewater and Sludges. Swedish University of Agricultural Sciences, Uppsala: 121–127. Didukh, Ya.P. (2010). What is the future of our forests? Ukrainian Botanical Journal 67 (3): 321–343. (in Ukrainian) Didukh, Ya.P., Chusova O.O., Olshevska I.A. & Polischuk, Yu.V. (2015). River valleys as the object of ecological and geobotanical research. Ukrainian Botanical Journal 72 (5): 415–430. http://dx.doi.org/10.15407/ukrbotj72.05.415
Dubyna, D.V., Dziuba, T.P., Іemelіanova, S.M., Bagrikova, N.O., Borysova, O.V., Borsukevych, L.M., Vynokurov, D.S., Gapon, S.V., Gapon, Yu.V., Davydov, D.A., Dvoretskyi, T.V., Didukh, Ya.P., Zhmud, O.I., Kozyr, M.S., Konishchuk, V.V., Kuzemko, A.A., Pashkevych, N.A., Ryff, L.E., Solomakha, V.A., Felbaba-Klushyna, L.M., Fitsailo, T.V., Chorna, H.A., Chorney, I.I., Shelyag-Sosonko, Yu.R. & Iakushenko, D.M. (2019). Prodrome of the vegetation of Ukraine. Kyiv: Naukova dymka, 784 p. (in Ukrainian). Dušek, J. & Květ, J. (2006). Seasonal dynamics of dry weight, growth rate and root/shoot ratio in different aged seedlings of Salix caprea. Biologia. Bratislava 61 (4): 441–447. https://doi.org/10.2478/s11756- 006-0074-0 Ebbs, S., Bushey, J., Poston, S., Kosma, D., Samiotakis, M. & Dzombak, D. (2003). Transport and metabolism of free cyanide and iron cyanide complexes by willow. Plant, Cell & Environment 26: 1467–1478. https://doi.org/10.1046/j.0016-8025.2003.01069.x Elowson, S. (1999). Willow as a vegetation filter for cleaning of polluted drainage water from agricultural land. Biomass and Bioenergy 16: 281–290. Eltrop, L., Brown, G., Joachim, O. & Brinkmann, K. (1991). Lead tolerance of Betula and Salix in the mining area of Mechernich/Germany. Plant Soil 131: 275–285. https://doi.org/10.1007/BF00009459 Ericsson, T. (1981). Growth and nutrition in three Salix clones grown in low conductivity solutions. Physiologia Plantarum 52: 239–244. https://doi.org/10.1111/j.1399-3054.1981.tb08499.x Fuchylo, Ya.D. & Sbytna, M.V. (2009). Willow of Ukraine (biology, ecology, exploitation): monography. K.: Logos, 200 p. (in Ukrainian) Gray, D.H. & Sotir, R.B. (1996). Biotechnical and Soil Bioengineering Slope Stabilization, Wiley, New York, 271 p. Gordiyenko, M.I., Fuchylo, Ya.D. & Goychuk, A.F. (2002). Shrub willows (biology, ecology, use, exploitation). Kyiv, 174 p. (in Ukrainian) Greger, M. & Landberg, T. (1999). Use of willow in phytoextraction. International Journal of Phytoremediation 1 (2): 115–123. https://doi.org/10.1080/15226519908500010 Guiry, M.D. & Guiry, G.M. (2024). AlgaeBase. Worldwide electronic publication, Nat. Univ. Ireland, Galway. http://www.algaebase.org
Hightshoe, G. (1998). Native Trees, Shrubs and Vines for Urban and Rural America, Wiley, New York, 819 p. Jackson, M.B. & Attwood, P.A. (1996). Roots of willow (Salix viminalis) show marked tolerance to oxygen shortage in flooded soils and in solution culture. Plant Soil 187: 37–45. https://doi.org/10.1007/BF00011655 Keller, C., Hammer, D., Kayser, A., Richner, W., Brodbeck, M. & Sennhauser, M. (2003). Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field. Plant Soil 249: 67–81. https://doi.org/10.1023/A:1022590609042 Kennedy, C.E.J. & Southwood, T.R.E. (1984). The number of species of insects associated with British trees; a re-analysis. Journal of Animal Ecology 53: 455–478. https://doi.org/10.2307/4528 Klang-Westin, E. & Eriksson, J. (2003). Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 249: 127–137. https://doi.org/10.1023/A:1022585404481 Klang-Westin, E. & Perttu, K. (2002). Effect of nutrient supply and soil cadmium concentration on cadmium removal by willow. Biomass and Bioenergy 23: 415–426. https://doi.org/10.1016/S0961-9534(02)00068-5 Kondratyeva, N.V. (1968). Blue-green algae – Cyanophyta. Guide to the fresh water algae of the Ukrainian SSR. Kyiv, 321 с. (in Ukrainian) Kopp, R.F., Abrahamson, L.P., White, E.H., Volk, T.A., Nowak, C.A. & Fillhart, R.C. (2001). Willow biomass production during ten successive annual harvests. Biomass and Bioenergy 20: 1–7. https://doi.org/10.1016/S0961-9534(00)00063-5 Kowalik, P.J. & Randerson, P.F. (1994). Nitrogen and Phosphorus Removal by Willow Stands Irrigated with Municipal Waste Water-A Review of the Polish Experience. Biomass and Bioenergy 6: 133–139. https://doi.org/10.1016/0961-9534(94)90092-2 Krasny, M.E., Zasada, J. C. & Vogt, K. (1988). Adventitious rooting of four Salicaceae species in response to a flooding event. Canadien Journal of Botany 66: 2597–2598. https://doi.org/10.1139/b88-352
Kuzemko, A., Didukh, Ya., Onyshchenko, V., Borsukevych, L., Chorney, І., Moysiyenko, I., Sadogurska, S., Kish, R., Pashkevych, N., Khodosovtsev, O., Iakushenko, D., Vynokurov, D., Dziuba, T., Iemelianova, S., Fitsailo, T., Bashta, A.-T., Budzhak, V., Vasheniak, I., Zakharova, M. & Shapoval, V. (2018). National habitat catalogue of Ukraine (high resolution). Kyiv: Ind. entr. Klymenko Y.Y., 442 p. (in Ukrainian) Kuzemko, A., Prylutskyi, O., Kolomytsev, G., Didukh, Y., Moysiyenko, I., Borsukevych, L., Chusova, O., Splodytel, A. & Khodosovtsev, O. (2024). Reach the bottom: plant cover of the former Kakhovka Reservoir, Ukraine. Research Square. https://doi.org/10.21203/rs.3.rs-4137799/v1 Kuzovkina, Y.A., Knee, M. & Quigley, M.F. (2004). Cadmium and copper uptake and translocation of five Salix L. species. International Journal of Phytoremediation 6 (3): 269–287. https://doi.org/10.1080/16226510490496726 Kuzovkina, Y.A. & Quigley, M.F. (2005). Willows betone wetlands: uses of Salix L. species for environmental projects. Water, Air, and Soil Pollution 162: 183–204. https://doi.org/10.1007/s11270-005-6272-5 Kuzovkina Y., Weih, M. & Romero, A. (2008). Salix: botany and global horticulture. Horticultural Reviews 34: 447–489. https://doi.org/10.1002/9780470380147.ch8 Labrecque, M., Teodorescu, T.I. & Daigle, S. (1995). Effect of Wastewater Sludge on Growth and Heavy Metal Bioaccumulation of Two Salix Species. Plant Soil 171: 303–316. https://doi.org/10.1007/BF00010286 Labrecque, M. & Teodorescu, T. I. (2003). High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass and Bioenergy 25: 135–146. https://doi.org/10.1016/S0961-9534(02)00192-7 Landberg, T. & Greger, M. (1994). Cadmiun tolerance in Salix. Biologia Plantarum 361 (Suppl.), 280 p. Ledin, S. (1996). Willow wood properties, production and economy. Biomass and Bioenergy 11 (2/3): 75–83. https://doi.org/10.1016/0961-9534(96)00022-0 Ledin, S. (1998). Environmental consequences when growing short rotation forests in Sweden. Biomass and Bioenergy 15 (1): 49–55. https://doi.org/10.1016/S0961-9534(97)10054-X Lindroth, A., Cermak, J., Kucera, J., Cienciala, E. & Eckersten, H. (1995). Sap flow by the heat balance method applied to small size Salix trees in a short-rotation forest. Biomass and Bioenergy 8 (1): 7–15. https://doi.org/10.1016/0961-9534(94)00085-8 Mohsin, M., Kaipiainen, E., Salam, M.M.A., Evstishenkov, N., Nawrot, N., Villa, A., Wojciechowska, E., Kuittinen, S. & Pappinen, A. (2021). Biomass Production and Removal of Nitrogen and Phosphorus from Processed Municipal Wastewater by Salix schwerinii: A Field Trial. Water 13 (16), 2298. https://doi.org/10.3390/w13162298 Maroder, H.L., Prego, I.A., Facciuto, G.R. & Maldonado, S.B. (2000). Storage behaviour of Salix alba and Salix matsudana seeds. Annals of Botany 86: 1017–1021. https://doi.org/10.1006/anbo.2000.1265 Maurice, C., Ettala, M. & Lagerkvist, A. (1999). Effects of leachate irrigation on landfill vegetation and subsequent methane emissions. Water, Air, Soil Pollution 113: 203–216. https://doi.org/10.1023/A:100506950367 McLeod, K.W. & McPherson, J. K. (1973). Factors limiting the distribution of Salix nigra. Bulletin of the Torrey Botanical Club 100: 102–110. https://doi.org/10.2307/2484398
Mucina, L., Bültmann, H., Dierßen, K. Theurillat, J.-P.,Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., Gavilán García, R., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniëls, F.J.A., Bergmeier, E., Santos Guerra, A., Ermakov, N., Valachovič, M., Schaminée, J.H.J., Lysenko, T., Didukh, Y.P., Pignatti, S., Rodwell, J.S., Capelo, J., Weber, H.E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Hennekens, S.M. & Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19 (1): 1–783. https://doi.org/10.1111/avsc.12257 Mikhailyuk, T., Glaser, K., Holzinger, A. & Karsten, U. (2015). Biodiversity of Klebsormidium (Streptophyta) from alpine biological soil crusts (Alps, Tyrol, Austria, and Italy). Journal of Phycology 51: 750–767. Norenko, M. & Didukh, Ya.P. (2017). Morphometric parametres and age structure of Elaegnus angustifolia L.on the Northern and Western boundaries of its area. Biological sytems 9 (1): 115–122. (in Ukrainian) Persson, G. & Lindroth, A. (1994). Simulating evaporation from short-rotation forest: variations within and between seasons. Journal of Hydrology 156: 21–45. https://doi.org/10.1016/0022-1694(94)90069-8 Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., de Vos, A.C., Buchmann, N., Funes, G., Quetier, F., Hodgson, J.G., Thompson, K., Morgan, H.D., ter Steege, H., van der Heijden, M.G.A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M.V., Conti, G., Staver, A.C., Aquino, S. & Cornelissen, J.H.C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167–234. http://dx.doi.org/10.1071/BT12225 Philippot, S. (1996). Simulation models of short-rotation forestry production and coppice biology. Biomass and Bioenergy 11 (2/3): 85–93. https://doi.org/10.1016/0961-9534(96)00008-6 POWO (2024). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; https://powo.science.kew.org/ Retrieved 12 October 2024 Punshon, T. & Dickinson, N. (1997). Acclimation of Salix to metal stress. New Phytologist 137: 303–314. https://doi.org/10.1046/j.1469-8137.1997.00802.x Robinson, B.H., Mills, T.M., Petit, D., Fung, L.E., Green, S.R. & Clothier, B.E. (2000). Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227: 301–306. https://doi.org/10.1023/A:1026515007319 Rytter, R.-M. & Hansson, A.-C. (1996). Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilized Salix viminalis L. plantation. Biomass and Bioenergy 11 (2/3): 129–137. https://doi.org/10.1016/0961-9534(96)00023-2 Sage, R.B. (1998). Short rotation coppice for energy: towards ecological guidelines. Biomass and Bioenergy 15 (1): 39–47. Sennerby-Forsse, L., Melin, J., Rosen, K. & Siren, G. (1993). Uptake and distribution of radiocesium in fast-growing Salix viminalis L. Journal of Sustainable Forestry 1 (3): 93–103. Sinchenko, V.M. (ed.) (2015). Energy willow: technology of cultivation and use. Vinnytsa: Tvory, 340 p. Skvortsov, A.K. (1999). Willows of Russia and adjacent countries. Taxonomic and Geographic Revision. Joensuu University Press, Joensuu, 307 p. Sommerville, A.H.C. (1992). Willows in the environment. In R. Watling & J. A. Raven (eds). Willow Symposium. Proceedings of The Royal Society of Edinburgh 98: 215–225. Sudnik-Wójcikowska, B., Moysiyenko, I.I., Slim, P. & Moraczewski, I. (2009). Impact of the invasive species Elaeagnus angustifolia on Pontic desert steppe zone vegetation in southern Ukraine. Polish Journal of Ecology 57 (2): 269–281. Thompson, W. (1998). Botanical Remedies. Landscape Architect 8: 38–43. Vandenhove, H., Thiry, Y., Gommers, A., Goor, F., Jossart, J. M., Holm, E., Gaufert, T., Roed, J., Grebenkov, A. & Timofeyev, S. (2001). Short rotation coppice for revaluation of contaminated land. Journal of Environmental Radioactivity 56: 157–184. https://doi.org/10.1016/S0265-931X(01)00052-2 Vervaeke, P., Luyssaert, S., Mertens, J., Meers, E., Tack, F. M. G. & Lust, N. (2003). Phytoremediation prospects of willow stand on contaminated sediment: a field trial. Environmental Pollution 126: 275–282. https://doi.org/10.1016/S0269-7491(03)00189-1
Vynogradova, O.M. (2011). The genus Phormidium Kütz. ex Gomont (Oscillatoriales, Cyanoprokaryota) in the flora of Ukraine. Algologia 21 (1): 70–86.
Vyshnevskyi, V., Shevchuk, S., Komorin, V., Oleynik, Y. & Gleick, P. (2023). The destruction of the Kakhovka dam and its consequences. Water International 48 (5): 631-647. https://doi.org/10.1080/02508060.2023.2247679 Watson, C., Pulford, I.D. & Riddell-Black, D. (2003). Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix). International Journal of Phytoremediation 5 (4): 333–349. https://doi.org/10.1080/15226510309359041 Wilkinson, A. G. (1999). Poplars and willows for soil erosion control in New Zealand. Biomass and Bioenergy 16: 263–274. https://doi.org/10.1016/S0961-9534(99)00007-0