Centaurea borysthenica (Asteraceae): molecular annotation and population heterogeneity

Authors

  • I.YU. KOSTIKOV
  • V.I. DIDENKO
  • M-L. CHEN

DOI:

https://doi.org/10.32999/ksu1990-553X/2022-18-3-3

Keywords:

Acrolophus, clade, haplotype, hybrid, ITS1, ITS2, location, population, ribotype, rpl32-trnL.

Abstract

Centaurea borysthenica is a local endemic of Ukraine. The phylogenetic position, evolutionary history, and taxonomic status of this controversial species were clarified. The independent status of Centaurea borysthenica as a part of C. arenaria agg. was recognized based on molecular phylogenetic analysis of nuclear (ITS1-5.8S rRNA-ITS2) and chloroplast (rpl32-trnL) sequences of four populations (including two from locus classicus). The species-specific features of C. borysthenica were updated. We recognize the hybridogenic origin of C. borysthenica from C. arenaria agg. (maternal genotype), and a hypothetical species with a unique endemic Eastern European ribotype (paternal genotype). The haplotype of all studied populations was identical to haplotype of C. arenaria and C. odessana that differs from all known haplotypes of C. stoebe s.l. By ribotype, C. borysthenica is an alloploid with a combination of two ITS alleles, one of them belongs to the so-called Balkan ribotype inherent of C. arenaria and C. odessana (reference sequence MW383495), the other belongs to the unique so-called Ukrainian ribotype 3 (reference sequence MW383493 with substitutions 83.Y>C, 458.Y>T). The studied specimens with the phenotype «C. borysthenica» from four populations of Zaporizhzhya, Mykolaiv, and Dnipropetrovsk regions were recognized as secondary hybrids between C. borysthenica and different species of the Centaurea section (especially C. diffusa and C. stoebe s.l.). All these secondary hybrids retain the C. borysthenica haplotype, and the ribotype contains at least one of the alleles of this species is either Balkan or Eastern Ukrainian (the so-called Ukrainian ribotype 3).

References

BYUN YA., KYUNGSOOK H. (2006). Pseudoviewer: Web application and web service for visualizing RNA pseudoknots and secondary structures. Nucleic Acids Res., 1(34): 416–422. doi: 10.1093/nar/gkl210

CAISOVÁ L., MARIN B., MELKONIAN M. (2013). A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist, 164(4): 482–496. doi: 10.1016/j.protis.2013.04.005

CHASSOT P., NEMOMISSA S., YUAN Y-M., KUPHER P. (2001). High paraphyly of Swertia L. (Gentianaceae) in the gentianella-lineage as revealed by nuclear and chloroplast DNA sequence variation. Plant Syst. Evol., 229: 1–21. doi: 10.1007/s006060170015

CHOI Y.-J., THINES M. (2015). Host jumps and radiation, not co-divergence drives diversification of obligate pathogens. A case study in Downy mildews and Asteraceae. PLOS ONE, July31: 1–21. doi: 10.1371/journal.pone.0133655

DIDENKO V., KOSTIKOV I., KARPENKO N. (2017) Molecular genetic specifics of Centaurea pseudoleucolepis Kleopow (Asteraceae, Magnoliophyta) inferring to the analysis of chloroplast and nuclear DNA. Natural and historical and cultural heritage of the reserve area "Stone Graves" (to the 90th anniversary of the creation of the "Stone Graves" nature reserve): Scientific works of the All-Ukrainian Scientific and Practical Conference, Nazarovka, Donetsk region, Ukraine, May 25-27, 2017: 133–140. (in Ukrainian)

DIDENKO V.I., MOYSIYENKO I.I., KOLOMIYCHUK V.P., KARPENKO N.I., KOSTIKOV I.YU., MANYUK V.V. (2018). Centaurea konkae and C. appendicata (Asteraceae, Magnoliophyta): features of ITS1 and ITS2 sequences secondary structure. Wulfenia, 25: 70–80.

DOBROCHAEVA D.M. (1965). Rid Voloshka – Centaurea L. In: Visiulina O.D. [ed.]: Flora URSR 12: 37–165. Kyiv: Vyd-vo AN URSR. (in Ukrainian)

DOSTÁL J. (1976). Centaurea L. In: Flora Europaea, vol. 4 (eds) Tutin T.G., Heywood V.H., Burges N.A., Valentine D.H., Walters S.M., Webb D.A. Cambridge University Press: Cambridge- London-New York-Melbourne, p. 254–301.

DOYLE J. J., DOYLE J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12: 13–15.

GOERTZEN L.R., CANNONE J.J., GUTELL R.R., JANSEN R.K. (2003). ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. Mol. Phylogenet. Evol., 29: 216–234. doi: 10.1016/s1055-7903(03)00094-0

GRUNER L. (1868). Enumeratio plantarum, quas anno 1865 ad flumina Borysthenem et Konkam Inferiorem in Rossiae australis provinciis Catherinoslaviensi et Taurica. Bulletin de la Société impériale des naturalistes de Moscou, 41(3): 426–427

HALL T.A. (1999). BioEdit: a user-friendly biological sequene aligment editor and analysis program for Windows 95/98NT. Nucleic Acids Symposium Series, 41: 95–98

HILPOLD A., VILATERSANA R., SUSANNA A., MESEGUER A.S., BORŠIĆ I., CONSTANTINIDIS T., FILIGHEDDU R., ROMASCHENKO K., SUÁREZ-SANTIAGO V.N., TUGAY O., UYSAL T., PFEIL B.E., GARCIA-JACAS N. (2014a). Phylogeny of the Centaurea group (Centaurea, Compositae) – geography is a better predictor than morphology. Mol. Phylogenet. Evol., 77: 195–215. doi: 10.1016/j.ympev.2014.04.022

HILPOLD A., GARCIA-JACAS N., VILATERSANA R., SUSANNA A. (2014b). Taxonomical and nomenclatural notes on Centaurea: A proposal of classification, a description of new sections and subsections, and a species list of the redefined section Centaurea. Collectanea Botanica, 33 (e001): 1–29. doi: 10.3989/collectbot.2013.v33.001

KARBSTEIN K., TOMASELLO S., HODAC L., WAGNER N., MARINČEK P., BARKE B.H., PAETZOLD C., HÖRANDL E. (2022). Untying Gordian knots: Unraveling reticulate polyploid plant evolution by genomic data using the large Ranunculus auricomus species complex. New Phytologist, 235: 2081–2098. doi: 10.1111/nph.18284

KARPENKO N., MARTYNIUK V., TYSHCHENKO O., TARIEIEV A., TEKPINAR A., DIDENKO V., KOSTIKOV I. (2018). Resolving position of Astragalus borysthenicus Klokov within Astragalus L. species. Turkish journ botany, 42(5): 623–635. doi: 10.3906/bot-1712-52

KING R.C., STANSFIELD W.D., MULLIGAN P.K. (2007). A Dictionary of Genetics. Oxford: Oxford University Press, 608 p.

KLOKOV M.V. (1935). Analiz grupy perlovykh voloshok (Centaurea margaritacea Ten. sensu amplo). Trudy Inst. Bot. Kharkivs’k Derzhavn. Univ. 1: 78–105. (In Ukrainian)

KUMAR S., STECHER G., LI M., KNYAZ C., TAMURA K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol., 35(6): 1547-1549. doi:10.1093/molbev/msy096

LUKASHOV V.V. (2009). Molekuliarnaia evoliutsiia i filogeneticheskii analiz. M.: BIOM Laboratoriia znanii, 256 p. (in Russian)

MARTYNIUK V.O., KARPENKO N.I., TARIEIEV A.S., KOSTIKOV I.YU. (2018). Differences of Atocion lithuanicum from A. armeria and their hybrid (Sileneae, Caryophyllaceae) by ITS1-ITS2 sequences and secondary structure of their transcripts. Ukr. Botan. Journ., 75(4). 322–334. doi: 10.15407/ukrbotj75.04.322

MOYSIYENKO І.І., TARIEIEV A.S., DIDENKO V.I., KARPENKO N.I., KOSTIKOV I.YU. (2014). Centaurea breviceps Iljin (Asteraceae, Magnoliophyta): neotype and its annotation according to ITS1 and ITS2 secondary structures. Chornomors’k. bot. z., 10(3): 276–286. doi: 10.14255/2308-9628/14.103/1

MRÁZ P., GARCIA-JACAS N., GEX-FABRY E., SUSANNA A., BARRES L., MÜLLER-SCHÄRER H. (2012). Allopolyploid origin of highly invasive Centaurea stoebe s.l. (Asteraceae). Molekular Phylogenetics and Evolution, 62(2): 612–623. doi: 10.1016/j.ympev.2011.11.006

RAMBAUT A. (2016). FigTree, version 1.4.3. Computer program distributed by the author. http://tree.bio.ed.ac.uk/software/figtree/

RONQUIST F., HUELSENBECK J.P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574. doi: 10.1093/bioinformatics/btg180

SHAW J., LICKEY E.B., SCHILLING E.E., SMALL R.L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am. J. Bot., 94: 275–288. doi: 10.3732/ajb.94.3.275

SHIYAN N.M., MOSYAKIN S.L., FEDORONCHUK M.M. (2010). Typification of taxa of Asteraceae in the flora of Ukraine: genera Centaurea L. Ukr. Botan. Journ., 67(6): 818–831. (in Ukrainian)

SHYNDER O. (2021). The taxonomic complex Centaurea stoebe s. l. (Asteraceae) in the flora of Ukraine. Novitates Theriologicae, 12: 237–251 (in Ukrainian). doi: 10.53452/nt1236

SOLTIS P.S., SOLTIS D.E. (2009). The role of hybridization in plant speciation. Annu. Rev. Plant. Biol., 60: 561-588. doi: 10.1146/annurev.arplant.043008.092039

TAMURA K., STECHER G., PETERSON D., FILIPSKI A., KUMAR S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol., 30(12): 2725–2729. doi: 10.1093/molbev/mst197

TARIEIEV A.S., GIRIN A.I., KARPENKO N.I., TYSHCHENKO O.V., KOSTIKOV I.YU. (2011). Modified method of DNA extraction from herbarium specimens. Chornomors’k. bot. z., 7(4): 309–317 (in Ukrainian).

TURNER K.G., GRASSA C.J. (2014). Complete plastid genome assembly of invasive plant, Centaurea diffusa. [PRE-PRINT] bioRxivdoi: doi: 10.1101/005900

WHITE T.J., BRUNS T., LEE S., TAYLOR J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A guide to methods and applications (Eds) Innis M., Gelfand D., Sninsky J., White T. Academic Press: San Diego, 315–322.

ZUKER M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 31: 3406–3415. doi: 10.1093/nar/gkg595

Published

2022-11-11

How to Cite

KOSTIKOV, I., DIDENKO, V., & CHEN, M.-L. (2022). Centaurea borysthenica (Asteraceae): molecular annotation and population heterogeneity. CHORNOMORSKI BOTANICAL JOURNAL, 18(3), 222–245. https://doi.org/10.32999/ksu1990-553X/2022-18-3-3