Ability of the geographically weighted principal components analysis for assessing of the maize (Zea mays L.) spatial nonstationarity morphometrics traits interrelation

Authors

  • A.V. ZHUKOV
  • K.V. ANDRUSEVICH

DOI:

https://doi.org/10.14255/2308-9628/15.113/13

Keywords:

principal components analysis, morphometric traits, spatial variability.

Abstract

Spatial patterns of maize morphometrics traits interrelation variability with geographically weighted principal components analysis at large-scale level have been revealed. Spatial variability of covariation structures which describes interrelation between morphometrics indicators and density of standing of maize have been established. The global pattern of interrelation obtained by means of the classical principal component analysis have been shown as not to be identical to local covariation structures. Local covariation structures which found with geographically weighted principal components analysis within an optimum kernel bandwidth are characterised by much higher level of nonrandom variability which is described by first three principal components. The part of a dispersion which specifies in a coordination of morphological structures, is characterised by natural spatial trends of a variation. Local covariation structures form spatially natural patterns of the placing. Feature of these structures is quantitative redistribution of those values or other signs within the limits of enough invariant configurations. The continuity covariation structures in a qualitative sense at various scale levels (global and local) but with local quantitative specificity is shown. This specificity is shown in prevalence of this or that indicator as basic marker main components at local level. Revealing of spatial patterns covariation structures puts a problem of understanding of the nature of this spatial regularity.

References

ANSELIN L., IBNU S., YOUNGIHN KH. (2006). GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis, 38 (1): 5-22.

ARROUAYS D., SABY N.P.A., THIOULOUSE J., JOLIVET C., BOULONNE L., RATIE C. (2011). Large trends in French topsoil characteristics are revealed by spatially constrained multivariate analysis. Geoderma, 161: 107-114.

BOON E.J.M.C., STRUIK P.C., TAMMINGA S., ENGELS F.M., CONE J.W. (2008). Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. III. Intra-stem variability in anatomy, chemical composition and in vitro rumen fermentation. NJAS – Wageningen Journal of Life Sciences, 56 (1-2): 101-122.

BOS H.J., TIJANI-ENIOLA H., STRUIK P.C. (2000). Morphological analysis of leaf growth of maize: responses to temperature and light intensity. Netherlands Journal of Agricultural Science, 48: 181-198.

CAMUSSI A. (1979). Numerical taxonomy of Italian populations of maize based on quantitative traits. Maydica, 24: 161-174.

CHARLTON M., BRUNSDON C., DEMŠAR U., HARRIS P., FOTHERINGHAM A.S. (2010). Principal components analysis: from global to local. 13th AGILE International Conference on Geographic Information Science. Guimaraes, Portugal. 1-10.

GOLLINI I. LU B., CHARLTON M., BRUNSDON CH., HARRIS P. (2013). GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models. Journal of Statistical Software, 63 (17): 1-52.

GOUESNARD B., DALLARD J., PANOUILLE A., BOYAT A. (1997). Classification of French maize populations based on morphological traits. Agronomie, EDP Sciences, 17 (9-10): 491-498.

HAFIZ S.B.M., JEHANZEB F., EJAZ-UL-HASAN, TAHIRA B., TARIQ M. (2015). Cluster and principle component analyses of maize accessions under normal and water stress conditions. Journal of Agricultural Sciences, 60 (1): 33-48.

HAJIBABAEE M., AZIZI F., ZARGARI K. (2012). Effect of Drought Stress on Some Morphological, Physiological and Agronomic Traits in Various Foliage Maize Hybrids. American-Eurasian J. Agric. & Environ. Sci., 12 (7): 890-896.

HARRIS P., BRUNSDON C., CHARLTON M. (2011). Geographically Weighted Principal Components Analysis. International Journal of Geographical Information Science, 25 (10): 1717-1736.

KUMAR S., LAL R., LLOYD CH.D. (2012). Assessing spatial variability in soil characteristics with geographically weighted principal components analysis. Computational Geosciences, 16: 827-835.

LLAURADO M., MORENO-GONZALEZ J. (1993). Classification of northern Spanish populations of maize by numerical taxonomy. I. Morphological traits. Maydic, 38: 15-21.

LLOYD C.D. (2011). Local Models for Spatial Analysis. CRC Press. 352 р.

LLOYD C.D. (2010). Analysing population characteristics using geographically weighted principal components analysis: a case study of Northern Ireland in 2001. Comput. Environ. Urban., 34 (5): 389-399.

MADDONNI G.A., OTEGUI M.E. (2004). Intra-specific competition in maize: Early establishment of hierarchies among plants affects final kernel set. Field Crops Res., 85: 1-13.

MELCHIORRE P. (1992). Phenetic relationships among different races of maize (Zea mays sss mays) from Salta (Argentina). Maydica, 37:329-338.

ORDAS A., MALVAR R.A., DE RON A.M. (1994). Relationships among American and Spanish populations of maize. Euphytica, 79: 149-161.

R CORE TEAM (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

ZHUKOV O.V. (2015). Spatial analysis in ecology and agriculture. Dnipropetrovsk. 124 p. [ЖУКОВ О.В. (2015). Аналіз просторових даних в екології та сільському господарстві. Дніпропетровськ: ДНУ. 124 с.] DOI: 10.13140/RG.2.1.3480.2406

ZLOBIN YU.A., SKLYAR V.G., BONDAREVA L.M., KYRYLCHUK K.S. (2009). The morphometric concept in modern botany. Chornomors’k. bot. z., 5 (1): 5-22. [ЗЛОБІН Ю.А., СКЛЯР В.Г., БОНДАРЕВА Л.М., КИРИЛЬЧУК К.С. (2009). Концепція морфометрії у сучасній ботаніці. Чорноморськ. бот. ж., 5 (1): 5-22]

ZLOBIN YU.A. (1981). About vitality levels of plants. Journal of General Biology, 42 (4): 492-505. [ЗЛОБИН Ю.А. (1981). Об уровнях жизнеспособности растений. Журн. общей биологии, 42 (4): 492-505]

Published

2015-11-22

How to Cite

ZHUKOV, A., & ANDRUSEVICH, K. (2015). Ability of the geographically weighted principal components analysis for assessing of the maize (Zea mays L.) spatial nonstationarity morphometrics traits interrelation. CHORNOMORSKI BOTANICAL JOURNAL, 11(3), 397–406. https://doi.org/10.14255/2308-9628/15.113/13