Epigeic bryophytes of the forest ecosystems, peculiarities of their water exchange and productivity depending on the ecological locality conditions

Authors

DOI:

https://doi.org/10.32999/ksu1990-553X/2023-19-2-3

Keywords:

bryophytes, water-holding capacity, pigment complex, chlorophyll index.

Abstract

Question: What is the species diversity of epigeic bryophytes in the forest ecosystems of the Ukrainian Roztochya? Locations: Ukrainian Roztochya Methods: field study in the plots with certain ecological values Nomenclature: Hodgetts et al. 2020 Results: Differences in their water exchange and productivity have been established depending on locality conditions. A total of 48 species of bryophytes were found in the epigeic communities, of which the largest number (33 species of bryophytes and 2 species of liverworts) is found in the protected area of ancient forests. An increase in the number of xero-morphic ruderal and colonists in forest mesomorphic communities is an indicator of the degree of disruption of forest ecosystems by both natural and anthropogenic factors. More stable conditions of the water regime and higher humidity were determined in bryophytes and in the soil under them in the territory of old beech forests and stands of pine, compared to the areas of stationary recreation. Research results indicate that mosses of forest ecosystems had a fairly high chlorophyll content and low values (1.48–2.17) of Chl a/b ratio, which indicates not only their shade tolerance, but also greater adaptability to a wide range of lighting. For forest dominants of the family Polytrichaceae, the highest indicators of phytomass and photosynthetic productivity were recorded. In ancient forests, the phytomass of these species, depending on locality conditions, reached 337.55–784.57 g/m2, the indicators of the content of Chl a+b ranged from 3.82 to 4.61 mg/g of dry matter mass, СhI – 1.27–7.87 g/m2. Somewhat lower values of phytomass (584.86–784.57 g/m2) were estab-lished for subdominant species of the genus Plagiomnium, the content of of Chl a+b in which was 3.18–3.73 mg/g of dry matter mass, and СhI – 1.86–2.93 g/m2. In the disturbed areas, for small turf synuses of mosses-colonist and thallose-weft synusiae with the participation of liverworts, the above-ground phytomass of assimilating shoots (428.11–726.79 g/m2) and photosynthetic productivity (0.39–0.80 g/m2). Conclusions: Indicators of primary productivity show that the ability of the bryophyte cover to bind atmospheric carbon has an indicative value for assessing the state and functional features of forest ecosystems and depends on the species composition of bryosinuses, their phytomass indi-cators, and the content of chlorophylls in different locality conditions.

References

Ah-Peng, C., Cardoso, A.W., Flores, O., West, A., Wilding, N., Strasberg, D. & Hedderson, T.A. (2017). The role of epiphytic bryophytes in interception, storage, and the regulated release of atmospheric moisture in a tropical montane cloud forest. Journal of Hydrology 548: 665–673. https://doi.org/10.1016/j.jhydrol.2017.03.043

Anishchenko, L.N. (2009). Bioraznoobrazie mokhovoho pokrova i perspektivy eho ispolzovanya v fitoindykatsii ecosystem raiona hvoyno-shyrokolistvennyh lesov evropeiskoi chasty Rossiyskoy Federatsiy. DSc thesis. Bryansk: Bryanskiy Gosudarstvennyy Universitet im. ak. I.G.Petrovskogo. (In Russian)

Arynushkyna, E.V. (1970). Rukovodstvo po khymycheskomu analyzu pochv. M.: MHU, 488 s. (in Russian)

Babenko, L.M. & Kosakivska, I.V. (2017). Peculiarities of the chloroplast pigment composition and ultrastruc-ture of different plant taxa. Fiziolia rasteniy i genetica 49(1): 25–35. (in Ukrainian)

Bachuryna, H.F. & Melnychuk, V.M. (1987). Flora mokhiv Ukrainskoi RSR. Vyp. 1. K.: Naukova dumka. 180 s. (in Ukrainian)

Bachuryna, H.F. & Melnychuk, V.M. (1988). Flora mokhiv Ukrainskoi RSR. Vyp. 2. K.: Naukova dumka. 179 s. (in Ukrainian)

Bachuryna, H.F. & Melnychuk, V.M. (1989). Flora mokhiv Ukrainskoi RSR. Vyp. 3. K.: Naukova dumka. 176 s. (in Ukrainian)

Bachuryna, H.F. & Melnychuk, V.M. (2003). Flora mokhiv Ukrainy. Vyp. 4. K.: Akademperiodyka. 255 s. (in Ukrainian)

Cornelissen, J.H.C., Lang, S.I., Soudzilovskaia N.A. & During, H.J. (2007). Comparative Cryptogam Ecology: A Review of Bryophyte and Lichen Traits that Drive Biogeochemistry. Annals of Botany 99(5): 987–1001. https://doi.org/10.1093/aob/mcm030 Eldridge, D.J., Delgado-Baquerizo, M., Quero, J.L., Ochoa, V., Gozalo, B., García-Palacios, P., Escolar, C., García-Gómez, M., Prina, A., Bowker, M.A., Bran, D.E., Castro, I., Cea, A., Derak, M., Espinosa, C.I., Florentino, A., Gaitán, J.J., Gatica, G., Gómez-González, S., Ghiloufi, W., Gutierrez, J.R., Gusmán-Montalván, E., Hernández, R.M., Hughes, F.M., Muiño, W., Monerris, J., Ospina, A., Ramírez, D.A., Ribas-Fernández, Y.A., Romão, R.I., Torres-Díaz, C., Koen, T.B. & Maestre, F.T. (2020a). Surface indicators are correlated with soil multifunctionality in global drylands. Journal of Applied Ecology 57(2): 424–435. https://doi.org/10.1111/1365-2664.13540 Eldridge, D.J., Reed, S.C., Travers, S.K., Bowker, M.A., Maestre, F.T., Ding, J., Havrilla, C., Rodriguez-Caballero, E., Barger, N., Weber, B., Antoninka, A., Belnap, J., Chaudhary, B., Faist, A., Ferrenberg, S., Huber-Sannwald, E., Issa, O.M. & Zhao, Y. (2020b). The pervasive and multifaceted influence of biocrusts on water in the world's drylands. Global Change Biology 26(10): 1–12. https://doi.org/10.1111/gcb.15232

Elumeeva, T.G., Soudzilovskaia, N.A., During, H.J. & Cornelissen, J.H. (2011). The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. Journal of Vegetation Science 22: 152–164. https://www.jstor.org/stable/41059630

Glime, J.M. (2019). Bryophyte ecology. Vol. 1. Physiological ecology. Ebook sponsored by Michigan Techno-logical University and the International Association of Bryologists. Website: http://digitalcommons.mtu.edu/bryop hyte-ecology1/ [accessed 7 January 2019]. Grigoryuk, I.A., Tkachev, V.I., Savinskiy S.V. & Musienko, N.N. (2003). Sovremennyie metody issledovaniya i otsenki zasuho- i zharoustoychivosti rasteniy. K.: Naukovy Svit. 139 s. (In Russian)

Gusev, N.A. & Kinaeva, L.S. (1978). O fiziologicheskom znachenii i sovremennyih metodah issledovaniya vodoobmena i sostoyaniya vodyi v rasteniyah. Fiziologiya i biohimiya kulturnyih rasteniy 10(1): 113–123. (in Russian)

Hanson, D.T. & Rice, S.K. (2014). Photosynthesis in Bryophytes and Early Land Plants. E-Book Springe. https://doi.org/10.1007/978-94-007-6988-5

Hodgetts, N.G., Söderström, L., Blockeel, T.L., Caspari, S., Ignatov, M.S., Konstantinova, N.A., Lockhart, N., Papp, B., Schröck, C., Sim-Sim, M., Bell, D., Bell, N.E., Blom, H.H., Bruggeman-Nannenga, M.A., Brugués, M., Enroth, J., Flatberg, K.I., Garilleti, R., Hedenäs, L., Holyoak, D.T., Hugonnot, V., Kariyawasam, I., Köckinger, H., Kučera, J., Lara, F. & Porley, R.D. (2020). An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology 42(1): 1–116. https://doi.org/10.1080/03736687.2019.1694329

Ignatov, M.S. & Ignatova E.A. (2003). Moss flora of the Middle European Russia. Vol. 1: Sphagnaceae – Hedwigiaceae. Moscow: KMK, 608 s. (In Russian)

Ignatov, M.S. & Ignatova, E.A. (2004). Moss flora of the Middle European Russia. Vol. 2: Fontinalaceae – Amblistegiaceae. Moscow: KMK, 335 s. (in Russian) Ipatov, V.S. & Tarhova, T.N. (1982). Mikroklimat mohovyh i lishaynikovyh sinuziy v sosnyake zelenomoshno-lishaynikovom. Ekologiya 4: 27.

Kyyak, N. (2013). Photosynthetic activity of the mosses on the devastated territories of sulphur extraction. Visnyk of the Lviv University. Series Biology 62: 170–179. (in Ukrainian)

Lobachevska, O.V. (2014). Bryophytes as a model for the study of ecophysiological adaptation to environmental conditions. Chornomorski Botanical Journal 10(1): 48–60. (in Ukrainian) http://dx.doi.org/10.14255/2308-9628/14.101/6

Lobachevska, O.V., Kyyak, N.Y. & Rabyk I.V. (2019). Ecological and physiological eculiarities of bryophytes on a post-technogenic salinized territory. Biosystems Diversity 27(4): 342–348.

Malenovský, Z., Turnbull, J.D., Lucieer, A. & Robinson, S.A. (2015). Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New Phytology 208(2): 608–624. https://doi.org/10.1111/nph.13524

Michel, P., Payton, I.J., Lee, W.G. & During H.J. (2013). Impact of disturbance on above-ground water storage capacity of bryophytes in New Zealand indigenous tussock grassland ecosystems. New Zealand Journal of Ecology 37(1): 114–126. Mineev, V.G. (1989). Praktikum po agrohimii. Moskva: izd-vo MGU, 304 s. (in Russian)

Mölder, A., Schmid,t M., Schönfelder, E., Engel, F. & Schulz, F. (2015). Bryophytes as indicators of ancient woodlands in Schleswig-Holstein (Northern Germany). Ecological Indicators 54: 12–30. https://doi.org/10.1016/j.ecolind.2015.01.044

Mosyakin. S. & Fedoronchuk, M. (1999). Vascular plants of Ukraine. A nomenclatural checklist. Kiev, 345 p. https://doi.org/10.13140/2.1.2985.0409 Musienko, M.M., Parshikova, T.V. & Slavnyiy, P.S. (2001). Spektrofotometricheskie metody v praktike fiziologii, biohimii i ekologii rasteniy. K.: Fitosotsiotsentr, 200 s. (in Russian)

Oishi, Y. (2018). Evaluationof the water-Storage Capacity of Bryophytes along an Altitudinal gradient from Temperature Forests to the Alpine Zone. Forests 9(7): 433. https://doi.org/10.3390/f9070433

Polchyna, S.M. (1991). Metodychni rekomendatsii do laboratornykh i praktychnykh robit z gruntoznavstva. Chernivtsi: ChDU, 60 s. (in Ukrainian)

Porada, P., Ekici, A. & Beer, C. (2016). Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. The Cryosphere 10: 2291–2315. https://doi.org/10.5194/tc-10-2291-2016

Porada, P., Van Stan, J.T. & Kleidon, A. (2018). Significant contribution of non-vascular vegetation to global rainfall interception. Nature Geoscience 11(8): 563–567. https://doi.org/10.1038/s41561-018-0176-7

Proctor, M.C.F. (2000). Mosses and alternative adaptation to life on land. New Phytologist 148(1): 1–6.

Proctor, M.C.F. (2009). Physiological ecology.In: Bryophyte Biology. Eds. B. Goffinet, A.J. Shaw, Cambridge: Cambridge Univer. Press: 237–268. Shmakova, N.Yu. & Kudryavtseva, O.V. (2002) Sravnitelnaya otsenka listovogo i hlorofilnogo indeksov dlya opredeleniya godichnoy produktsii organicheskogo veschestva v soobschestvah gornoy tundry i Hibin. Botanical zhurnal 87(3): 85–97. (In Russian) Shmakova, N.Yu., Lukyanova, L.M., Bulyicheva, T.M. & Kudryavtseva O.V. (2006) Produktsionnyiy protsess v soobschestvah gornoy tundryi Hibin. Apatityi. 125 s. (in Russian)

Syvash, O.O., Mykhaylenko, N.F. & Zolotareva, E.K. (2018). Variation of chlorophyll a to b ratio at adapitation of plants to external factors. The bulletin of Kharkiv National agrarian university. Series Biology 3(45): 49–73. (in Ukrainian)

Tao, Y. & Zhang Y.M. (2012). Effects of leaf hair points of a desert moss on water retention and dew formation:Implications for desiccation tolerance. Journal Plant Research 125(3): 351–360. https://doi.org/10.1007/s10265-011-0449-3 Thielen, S.M., Gall, C., Ebner, M., Nebel, M., Scholten, T. & Seitz, S. (2021). Water’s path from moss to soil: A multi-methodological study on water absorption and evaporation of soil-moss combinations. Journal of Hydrology and Hydromechanics 69(4): 421–435. https://doi.org/10.2478/johh-2021-0021 Trofimets, V.I. & Ipatov, V.S. (1990). Sredoobrazuyuschaya rol lishaynikovogo i mohovogo pokrovov v suhih sosnyakah. Botanical zhurnal 75(8): 1102–1108. (in Russian) Tuzhilkina, V.V. & Bobkova, K.S. (2010). Hlorofillnyiy indeks v fitotsenozah korennyih elnikov Evropeyskogo Severo-Vostoka. Lesnoy zhurnal 2: 17–23.(in Russian)

Van Tooren, B.F., Ode, B., During, H.J. & Bobbink, R. (1990). Regeneration of species richness in the bryophyte layer of Dutch chalk grasslands. Lindbergia 16: 153–160.

Van Zuijlen, K., Roos, R.E., Klanderud, K., Lang, S.I. & Asplund, J. (2020). Mat-forming lichens affect micro-climate and litter decomposition by different mechanisms. Fungal Ecology 44: 100905. https://doi.org/10.1016/j.funeco.2019.100905

Xiao, B. & Bowker, M.A. (2020). Moss-biocrusts strongly decrease soil surface albedo, altering land-surface energy balance in a dryland ecosystem. Science of the Total Environment 741: 140425. https://doi.org/10.1016/j.scitotenv.2020.140425

Xiao, B., Ma, S. & Hu, K. (2019). Moss biocrusts regulate surface soil thermal properties and generate buffering effects on soil temperature dynamics in dryland ecosystem. Geoderma 351: 9–24. https://doi.org/10.1016/j.geoderma.2019.05.017

Published

2023-06-30

How to Cite

LOBACHEVSKA, O. V., RABYK, I. V., & KARPINETS, L. I. (2023). Epigeic bryophytes of the forest ecosystems, peculiarities of their water exchange and productivity depending on the ecological locality conditions. CHORNOMORSKI BOTANICAL JOURNAL, 19(2), 187–199. https://doi.org/10.32999/ksu1990-553X/2023-19-2-3