Evaluation of contribution of salinity, irradiance, and nutrient deficiency into the yield of cells and -carotene accumulation in the culture of Dunaliella salina (Chlorophyta)

Authors

  • VICTORIA PAVLIVNA KOMARISTAYA
  • KATERYNA MYKOLAIVNA BILOUSOVA
  • OLEKSANDR MYKOLAIOVYCH RUDAS

DOI:

https://doi.org/10.14255/2308-9628/18.141/4

Keywords:

nitrate, phosphate, microalga, cultivation methodology.

Abstract

The purpose of the study was to evaluate the contribution of salinity, irradiance, nitrate and phosphate, and their interactions into the yield of cell number and -carotene accumulation in Dunaliella salina. To avoid confounding of the effects of factors-conditions by the depletion of factors-resources, the alga was grown in fed-batch culture. In the level ranges of the experimental factors (irradiance 2–8 klx, salinity 1–4 M NaCl, KNO3 0–80 mg L-1, K2HPO4 0–10 mg L-1), nitrate and phosphate influenced the productivity of culture by cell number and -carotene accumulation more strongly than salinity and irradiance. Effects of salinity and irradiance depended on nutrients and their pre-supply to the inoculum. Total effect size 2 of nutrients on cell yield comprised 0,59 for non-starved and 0,43 for starved inoculum, whereas total effect size of factors-conditions – 0,10 and 0,12 correspondingly. As to cellular -carotene content, total effect size of nutrients on the cells grown from non-starved and starved inoculum was 0,71 and 0,58, and of factors conditions – 0,8 and 0,5 correspondingly. Remained variances of cell yield and -carotene content were attributed to the interactions of salinity and irradiance with the nutrients. The combination of high values of salinity and irradiance exerted its own, unconfounded by depletion of nutrients, but lower influence on -carotene accumulation. The highest -carotene content of 53 pg per cell was observed in the culture grown from the starved inoculum at the deficiency of phosphorus. Combination of high salinity and irradiance values yielded 17 pg of -carotene per cell compared to about 5 pg under the optimal culture conditions. Controll nutrient supply would be the most powerful tool for biosynthesis control in D. salina culture.

References

ARAÚJO O.Q.F., GOBBI C.N., CHALOUB R.M., COELHO M.A.Z. (2009). Assessment of the impact of salinity and irradiance on the combined carbon dioxide sequestration and carotenoids production by Dunaliella salina: a mathematical model. Biotechnology and bioengineering, 102 (2): 425–435. doi: 10.1002/bit.22079

BELLISARIO B., NOVELLI C., CERFOLLI F., ANGELETTI D., CIMMARUTA R., NASCETTI G. (2010). The ecological restoration of the Tarquinia salterns drives the temporal changes in the benthic community structure. Transitional Waters Bulletin, 4 (2): 105–114. doi: 10.1285/i1825229Xv4n1p105

BEN-AMOTZ A. (1987). Effect of irradiance and nutrient deficiency on the chemical composition of Dunaliella bardawil Ben-Amotz and Avron (Volvocales, Chlorophyta). Journal of plant physiology, 131 (5): 479–487. doi: 10.1016/S0176-1617(87)80290-0

BEN-AMOTZ A. (1995). New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. Journal of applied phycology, 7 (1): 65–68. doi: 10.1007/BF00003552

BEN-AMOTZ A. (2004). Industrial production of microalgal cell-mass and secondary products – major industrial species. In: Handbook of microalgal culture: Biotechnology and Applied Phycology: 273–280. UK, Oxford, Blackwell Sciencedoi. doi: 10.1002/9780470995280.ch13

BEN-AMOTZ A. (2009). Bio-fuel and CO2 capture by algae. ANR meeting on «Third Generation Biofuels», Paris, France, February 5, 2015: 80 p. BEN-AMOTZ A., AVRON M. (1983). On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiology, 72 (3): 593–597. doi: 10.1104/pp.72.3.593

BEN-AMOTZ A., AVRON M. (1990). The biotechnology of cultivating the halotolerant alga Dunaliella. Trends in Biotechnology, 8: 121–126. doi: 10.1016/0167-7799(90)90152-N

BEN-AMOTZ A., KATZ A., AVRON M. (1982). Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil. Journal of Phycology, 18 (4): 529–537. doi: 10.1111/j.1529-8817.1982.tb03219.x

BEN-AMOTZ A., LERS A., AVRON M. (1988). Stereoisomers of β-carotene and phytoene in the alga Dunaliella bardawil. Plant physiology, 86 (4): 1286–1291. doi: 10.1104/pp.86.4.1286

BEN-AMOTZ A., SHAISH A., AVRON M. (1989). Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiology, 91 (3): 1040–1043. doi: 10.1104/pp.91.3.1040

BHUMIBHAMON O., SITTIPHUPRASERT U., BOONTAVEEYUWAT N., PRAIBOON J. (2003). The optimum use of salinity, nitrate and pond depth for -carotene production of Dunaliella salina. Kasetsart Journal: Natural Sciences, 37 (1): 84–89.

BOROWITZKA M.A. (1999). Commercial production of microalgae: ponds, tanks, and fermenters. Progress in industrial microbiology, 35: 313–321. doi: 10.1016/S0079-6352(99)80123-4

BOROWITZKA M.A. (2013). Dunaliella: biology, production, and markets. In: Handbook of microalgal culture: Biotechnology and Applied Phycology: 359–368. UK, Oxford, Blackwell Sciencedoi. doi: 10.1002/9781118567166.ch18

BOROWITZKA M.A., BOROWITZKA L.J., KESSLY D. (1990). Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. Journal of Applied Phycology, 2 (2): 111–119. doi: 10.1007/BF00023372

COESEL S.N., BAUMGARTNER A.C., TELES L.M., RAMOS A.A., HENRIQUES N.M., CANCELA L., VARELA J.K.S. (2008). Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Marine Biotechnology, 10 (5): 602–611. doi: 10.1007/s10126-008-9100-2

COHEN J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and Psychological Measurement, 33 (1): 107–112. doi: 10.1177/001316447303300111

COWAN A.K., ROSE P.D. (1991). Abscisic acid metabolism in salt-stressed cells of Dunaliella salina. Possible interrelationship with β-carotene accumulation. Plant physiology, 97 (2): 798–803. doi: 10.1104/pp.97.2.798

CURTAIN C. (2000). Plant Biotechnology – the growth of Australia’s algal -carotene industry. Australasian Biotechnology, 10 (3): 19–23.

DEL CAMPO J.A., GARCÍA-GONZÁLEZ M., GUERRERO M.G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied microbiology and biotechnology, 74 (6): 1163–1174. doi: 10.1007/s00253-007-0844-9

EFSA Panel on Food Additives and Nutrient Sources added to food (ANS). (2012). Scientific Opinion on the re-evaluation of mixed carotenes (E 160a (i)) and -carotene (E 160a (ii)) as a food additive. EFSA Journal, 10 (3): 25–93doi: 10.2903/j.efsa.2012.2593

GIORDANO M., PALMUCCI M., NORICI A. (2015). Taxonomy and growth conditions concur to determine the energetic suitability of algal fatty acid complements. Journal of Applied Phycology, 27 (4): 1401–1413. doi: 10.1007/s10811-014-0457-5

HOLLAND H.D. (1978). The chemistry of the atmosphere and oceans, Vol.1. New-York, USA: Wiley, 351 p.

IARC Working Group on the Evaluation of Cancer Preventive Agents. (1998). IARC Handbook on Cancer Prevention, Vol.2: Carotenoids. Lyon, France: IARC, 326 p.

JIMENEZ C., PICK U. (1994). Differential stereoisomer compositions of β, β-carotene in thylakoids and in pigment globules in Dunaliella. Journal of plant physiology, 143 (3): 257–263. doi: 10.1016/S0176-1617(11)81628-7

JONGMAN R.H.G., TER BRAAK C.J.F., VAN TONGEREN O.F.R. (1995). Data analysis in community and landscape ecology. Cambridge, UK: Cambridge university press, 324 p.

KOMARISTAYA V.P., ANTONENKO S.P., RUDAS A.N. (2010). Cultivation of Dunaliella salina Teod. at suboptimal concentrations and exclusion of nitrogen and phosphorus from the medium. Algologia, 20 (1): 42–55. (in Russian).

KOMARISTAYA V.P., GORBULIN O.S. (2006). Sporopollenin in the composition of cell walls of Dunaliella salina Teod. (Chlorophyta) zygotes. International Journal on Algae, 8 (1): 43–52. doi: 10.1615/InterJAlgae.v8.i1.40

KOMARISTAYA V.P., RUDAS A.A., TATISCHEVA N.M., TATISCHEV E.V., RUDAS A.N. (2014). Ecological peculiarities of natural populations of hyperhalobe microalga Dunaliella salina Teod. in solar salt work ponds of the South of Ukraine and Russia. The Journal of V.N. Karazin Kharkiv National University. Series: Biology, 20 (1100): 315–323.

LAMERS P.P., JANSSEN M., DE VOS R.C., BINO R.J., WIJFFELS R.H. (2008). Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends in biotechnology, 26 (11): 631–638. doi: 10.1016/j.tibtech.2008.07.002

LERCHE W. (1936/1937). Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Archiv für Protistenkunde, 88: 236–268. (in German)

LERS A., BIENER Y., ZAMIR A. (1990). Photoinduction of massive β-carotene accumulation by the alga Dunaliella bardawil kinetics and dependence on gene activation. Plant physiology, 93 (2): 389–395. doi: 10.1104/pp.93.2.389

LOEBLICH L.A. (1982). Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). Journal of the Marine Biological Association of the United Kingdom, 62 (3): 493–508. doi: 10.1017/S0025315400019706

LÓPEZ E., AGUILERA P.A., SCHMITZ M.F., CASTRO H., PINEDA F.D. (2010). Selection of ecological indicators for the conservation, management and monitoring of Mediterranean coastal Salinas. Environmental monitoring and assessment, 166 (1–4): 241–256. doi: 10.1007/s10661-009-0998-2

MARÍN N., MORALES F., LODEIROS C., TAMIGNEAUX E. (1998). Effect of nitrate concentration on growth and pigment synthesis of Dunaliella salina cultivated under low illumination and preadapted to different salinities. Journal of Applied Phycology, 10 (4): 405–411. doi: 10.1023/A:1008017928651

MÄRZ U. (2008). FOD025C-The Global Market for Carotenoids. Wellesley, MA USA: BCC Research, 153 p.

MASSJUK N.P. (1973). Morfologia, sistematika, ekologia, geograficheskoe rasprostranenie roda Dunaliella Teod. i perspektivy ego prakticheskogo ispolzovania. Kiev: Naukova Dumka, 244 p. (in Russian)

MENDOZA H., JIMÉNEZ DEL RÍO M., GARCÍA R.G., RAMAZANOV Z. (1996). Low-temperature-induced β-carotene and fatty acid synthesis, and ultrastructural reorganization of the chloroplast in Dunaliella salina (Chlorophyta). European Journal of Phycology, 31 (4): 329–331. doi: 10.1080/09670269600651551

MIL'KO S.I., KOMARISTAYA V.P., RUDAS A.N. (2011). Effect size of some factors influencing productivity indexes in Dunaliella salina Teod. culture. Karazinski Pryrodnychi Studii. Mat. mezhdunar. nauch. konf. Ukraine, Kharkiv: V.N. Karazin Kharkov National University, February 1-4, 2011: 293–295.

OREN A. (2009). Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquatic Microbial Ecology, 56 (2–3): 193–204. doi: 10.3354/ame01297

OREN A. (2014). The ecology of Dunaliella in high-salt environments. Journal of Biological Research-Thessaloniki, 21 (1): 23–40. doi: 10.1186/s40709-014-0023-y

RABBANI S., BEYER P., LINTIG J., HUGUENEY P., KLEINIG H. (1998). Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol, 116 (4): 1239–1248. doi: 10.1104/pp.116.4.1239

RAMOS A., COESEL S., MARQUES A., RODRIGUES M., BAUMGARTNER A., NORONHA J., RAUTER A., BRENIG B., VARELA J. (2008). Isolation and characterization of a stress-inducible Dunaliella salina Lcy-β gene encoding a functional lycopene β-cyclase. Applied microbiology and biotechnology, 79 (5): 819–828. doi: 10.1007/s00253-008-1492-4

RAMOS A.A., MARQUES A.R., RODRIGUES M., HENRIQUES N., BAUMGARTNER A., CASTILHO R., BRENIG B., VARELA J.C. (2009). Molecular and functional characterization of a cDNA encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase from Dunaliella salina. Journal of plant physiology, 166 (9): 968–977. doi: 10.1016/j.jplph.2008.11.008

RODRIGUES C.M., BIO A., AMAT F., VIEIRA N. (2011). Artisanal salt production in Aveiro/Portugal – an ecofriendly process. Saline Systems, 7 (3), 14 p. doi: 10.1186/1746-1448-7-3

ROESSLER P.G. (1990). Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. Journal of Phycology, 26 (3): 393–399. doi: 10.1111/j.0022-3646.1990.00393.x

SÁNCHEZ-ESTUDILLO L., FREILE-PELEGRIN Y., RIVERA-MADRID R., ROBLEDO D., NARVÁEZ-ZAPATA J.A. (2006). Regulation of two photosynthetic pigment-related genes during stress-induced pigment formation in the green alga, Dunaliella salina. Biotechnology letters, 28 (11): 787–791. doi: 10.1007/s10529-006-9001-2

SCHLIPALIUS L. (1991). The extensive commercial cultivation of Dunaliella salina. Bioresource technology, 38 (2): 241–243. doi: 10.1016/0960-8524(91)90162-D

SHAISH A., AVRON M., PICK U., BEN-AMOTZ A. (1993). Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta, 190 (3): 363–368. doi: 10.1007/BF00196965

WOLF Y.I., KAREV G., KOONIN E.V. (2002). Scale-free networks in biology: new insights into the fundamentals of evolution? Bioassays, 24 (2): 105–109. doi: 10.1002/bies.10059

Downloads

Published

2018-06-14

How to Cite

KOMARISTAYA, V. P., BILOUSOVA, K. M., & RUDAS, O. M. (2018). Evaluation of contribution of salinity, irradiance, and nutrient deficiency into the yield of cells and -carotene accumulation in the culture of Dunaliella salina (Chlorophyta). CHORNOMORSKI BOTANICAL JOURNAL, 14(1), 43–55. https://doi.org/10.14255/2308-9628/18.141/4