Methodological aspects of prediction of distribution of alien species on the basis of phytoindication

Authors

  • V.V. BUDZHAK
  • YA.P. DIDUKH
  • I.I. CHORNEY
  • A.I. TOKARIUK

DOI:

https://doi.org/10.32999/ksu1990-553X/2019-15-2-2

Keywords:

plant communities, alien species, ecological factors, ecological optimum, stress zone, models.

Abstract

The penetration of the invasive species into the natural habitats will be successful if ecological optimum of most factors for invading species coincides with the stress zone of these factors for the habitat, that means entering the value range of, so called, «reduced coenotic competition». The hypothesis was verified following analysis of 2,736 geobotanical descriptions of plant communities from the territory of Prut and Siret high basins. This flora includes 106 adventive species and 5 species-transformers among them. There was analyzed the coinciding degree of the ranges of model species’ tolerance zones (Erigeron annuus (L.) Desf. (species-transformer), Cichorium intybus L. (invasive species), Sisyrinchium septentrionale E. P. Bicknell (invasive species) and communities towards 12 leading ecological factors such as soil hydrological regimen (Hd), humidification variability (fH), aeration (Ae), acidity (Rc), salification (Tr (Sl)), soil carbonate content (Ca), content of assimilable nitrogen (Nt), thermal regimen (Tm), climate humidity (Om), climate continentality (Kn), climate hardness (Cr), light regimen (Lc)). It was found that the model species are present only in the plant communities, where total overlap of tolerance zones of leading ecological factors reach 80–100%. The authors have formed 3D-models that illustrate correlation between the overlap level of species ecological optimum, stress zone and plant communities ecological optimum, which can be used for estimation of alien species invasive possibilities and detecting potential plant communities for their adoption.

References

A COMPARATIVE assessment of existing policies on invasive species in the EU member states and in selected OECD countries. Final report by the European Comission (DG ENV) Unit B.2 Bio-diversity.,: 258 p. [http://ec.europa.eu/environment/nature/ invasivealien/docs/BIO_IAS Policies 2011. pdf].

BLACKBURN T.M., ESSL F., EVANS T., HULME P.E., JESCHKE J.M., KÜHN I., KUMSCHICK S., MARKOVÁ Z., MRUGAŁA A., NENTWIG W., PERGL J., PYŠEK P., RABITSCH W., RICCIARDI A., RICHARDSON D.M., SENDEK A., VILÀ M., WILSON J.R.U., WINTER M., GENOVESI P., BACHER S. (2014). A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biology, 12(5): 1–11.

BURDA R.I., PRYDATKO V.I. (2005). Stan vydiv: chuzhoridni y invaziyni vydy (roslyny). In: Ahrobioriznomanittya Ukrainy: teoriya, metodolohiya, indykatory, pryklady. Kyiv: ZAT «Nichlava»: 271–276. (in Ukrainian)

DIDUKH YA.P. (1988). Ekoloho-tsenotycheskye osobennosty povedenyya nekotorykh relyktovykh y redkykh vydov v svete teoryi ottesnenyya relyktov. Botan. zhurn., 73 (12): 1686–1698. (in Russian)

DIDUKH YA.P. (2008). Heohrafichnya struktura flory: defekt misheni. Etyudy fitoekolohii. Kyiv: Aristey: 127–151. (in Ukrainian)

DIDUKH YA.P. (2012). Modern concepts of the ecological niches and approaches to their assessment. NaUKMA Research Papers. Biology and Ecology, 132: 41–48. (in Ukrainian)

DIDUKH YA.P., PLYUTA P.G., PROTOPOPOVA V.V, YERMOLENKO V.M., KOROTCHENKO I.A., KARKUTSIEV G.M., BURDA R.I. (2000). Ecoflora of Ukraine. Kyiv: Phytososocenter, Vol. 2. 284 p. (in Ukrainian)

DIDUKH YA.P., PLYUTA P.H. (1994). Fitoindykatsiya ekolohichnykh faktoriv. Kyiv: Naukova dumka, 280 p. (in Ukrainian)

DIDUKH YA.Р. (1990). Methodological approaches то the problems of phytoindication of ecological factors. Ukr. Bot. J., 47(6): 5–12. (in Ukrainian)

DIDUKH YA.Р. (2012). Fundamentals of Bioindication. Kyiv: Naukova dumka, 344 p. (in Ukrainian)

DIDUKH YA.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre: 176 p.

FENG YU-L., LEI YA.-B., WANG R.-F., CALLAWAY R. M., VALIENTE-BANUET A., INDERJIT, LI YA.-P., ZHENG YU-L. (2009). Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. PNAS, 106(6): 1853–1856.

FOXCROFT L.C., PYŠEK P., RICHARDSON D. M., GENOVESI P., MACFADYEN S. (2017). Plant invasion science in protected areas: progress and priorities. Biol Invasions., 19: 1353–1378.

GLOBAL Strategy on Invasive Alien Species (2001). Convention of Biological Diversity, SBSTTA Sixth Meeting. Montreal: 52 p.

GRIME J.P. (1979). Plant strategies and vegetation processes. Chichester; New York; Brisbane & Toronto: John Wiley & Sons, 222 p.

HIERRO J.L., MARON J.L., CALLAWAY R.M. (2005). A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J. Ecol., 93: 5–15.

KONVENTSIYA pro biolohichne riznomanittya. P'yatyi natsionalnyi zvit Ukrainy (2015). Kyiv: 68 p. (in Ukrainian)

KUZEMKO A.A., BUDZHAK V.V., CHORNEY I.I., TOKARYUK A.I. (2015). Osnovy roboty v seredovyshchi prohram TurboVeg ta JUICE. Chernivtsi: Chernivetskyi nats. un-t., 64 p. (in Ukrainian)

LONSDALE W.M. (1999). Global patterns of plant invasions and the concept of invasibility. Ecology, 80: 1522 –1536.

MACK R.N., SIMBERLOFF D., LONSDALE W.M. (2000). Biotic invasions: causes, epidemiology, global consequences and control. Issues in Ecology, 5: 1–20.

MOSYAKIN A.S. (2009). An overview of main hypotheses of plant invasiveness. Ukr. Bot. J., 66(4): 466–476. (in Ukrainian)

MUCINA, L., BÜLTMANN, H., DIERßEN, K., THEURILLAT, J.-P., RAUS, T., ČARNI, A., ŠUMBEROVÁ, K., WILLNER, W., DENGLER, J., GAVILÁN GARCÍA R., CHYTRÝ M., HÁJEK M., DI PIETRO R., IAKUSHENKO D., PALLAS J., DANIËLS F.J.A., BERGMEIER E., SANTOS GUERRA A., ERMAKOV N., VALA-CHOVIČ M., SCHAMINÉE J.H.J., LYSENKO T., DIDUKH YA.P., PIGNATTI S., RODWELL J.S., CAPELO J., WEBER H.E., SOLOMESHCH A., DIMOPOULOS P., AGUIAR C., HENNEKENS S.M. & TICHÝ, L. (2016). Vegetation of Europe: Hierar-chical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19(1): 3–264.

PETITPIERRE B., KUEFFER CH., BROENNIMANN O., RANDIN CH., DAEHLER C., GUISAN A. (2012). Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders. Science, 335(6074): 1344–1348.

PROTOPOPOVA V.V., MOSYAKIN S.L., SHEVERA M.V. (2002). Fitoinvazii v Ukraini yak zahroza bioriznomanittyu: suchasnyi stan i zavdannya na maybutnye. Kyiv: Instytut botaniky im. M. H. Kholodnoho NAN Ukrainy, 32 p. (in Ukrainian)

REJMÁNEK M., RICHARDSON D.M., PYŠEK P. (2005). Plant invasions and invasibility of plant communities. In: Vegetation ecology. Oxford: Blackwell Science: 332–355.

RICHARDSON D.M., PYSEK P., REJMANEK M., BARBOUR M.G., PANETTA F.D., WEST C.J. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and distributions, 6(2): 93–107.

ROUT M.E., CALLAWAY R.M. (2009). An invasive plant paradox. Science, 324: 734–735.

SHELFORD V.E. (1931). Some concepts of bioecology. Ecology, 12(3): 455–467.

SHELFORD V.E. (1932). Life zones, modern ecology and failure of temperature summing. The Wilson Bulletin, 44: 144–157.

TAKHTADZJAN A. (2001). Principles of organization and transformation of complex systems: an evolutionary approach. St. Petersburg: SPCPA Press, 121 р. (in Russian)

TICHY L. (2002) JUICE, software for vegetation classification. Journal of Vegetation Science, 13(3): 451–453.

ZAVYALOVA L.V. (2017). The most harmful invasive plant species for native phytodiversity of protected areas of Ukraine. Biological systems, 9(1): 87–107. (in Ukrainian)

Published

2018-12-27

How to Cite

BUDZHAK, V., DIDUKH, Y., CHORNEY, I., & TOKARIUK, A. (2018). Methodological aspects of prediction of distribution of alien species on the basis of phytoindication. CHORNOMORSKI BOTANICAL JOURNAL, 15(2), 113–123. https://doi.org/10.32999/ksu1990-553X/2019-15-2-2