Estimation of the degree of industrial landscapes restoration based on biomass vegetation characteristics and three-dimensional soil cover modeling

Authors

  • T.M. PRISYAZHNYUK
  • O.O. DOLINA
  • A.M. BONDARENKO

DOI:

https://doi.org/10.32999/ksu1990-553X/2019-15-4-4

Keywords:

geo-information technologies, waste dump, substrate, primitive soils, biomass, phytocenoses.

Abstract

The soil cover structure and biomass characteristics of the phytocenoses in ArcelorMittal Kriviy Rih waste dump were studied. Soil cover structure and soil contour parameters were detailed using 3D-modelling. The use of the 3D-modelling is more objectively in contrast of mapping for industrial landscapes characterization. It confirms by increasing of object area by 50%. The waste dump area, according to the map is 38 ha, account for, and it is 55 ha according to 3D-model, the correction factor is 1.44. Confirmed, that 3D-modelling is necessary to predict the industrial objects self-recovery intensification and dynamics. It also useful to assess the quality of fertile and potentially fertile soils applying to waste dump survey. Structure of soil cover at waste dump is represented by combinations of primitive soils which have different genesis and depth with rocky substrates. More developed soils are situated on clay substrates. Phytocenoses with domination of Koeleria cristata, Achilea nobilis and Lathyrus tuberosus are adapted to survive and distribute on waste dumps with clay cover. Plant communities with Securigera varia, Hieracium echioides and Poa angustifolia domination are adapted to the stone substrates. Phytocenoses with Koeleria cristata domination are forming the biggest biomass (103.4 g/m2) on clays. The most biomass formed in Securigera varia phytocenoses – 20,9 g/m2 on the stone substrates. The average biomass of the grass phytocenoses on waste dumps for clay soils are 21.8 g/m2, and for stone substrates are 6.9 g/m2.

References

BODNER G., SCHOLL P., LOISKANDL W., KAUL H.P. (2013). Environmental andmanagement influences on temporal variability of near saturated soilhydraulic properties. Geoderma, 204: 120–129.

BUKOWSKI A.R., PETERMANN J.S. (2014). Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana. – Ecol. Evol., 4: 2533–2545.

BULAVA L.N. (1998). Landshaftnyi analiz territorii dlya celey rekultivacii i racionalnogo ispolzovaniya narushennyh zemel (na primere Krivorojskogo gornopromyshlennogo rayona). Dissertation candidate of geographical sciences degree. Kiev. 160 p. (in Russian)

DENISIK G.І. (1998). Antropogenni landshafti Pravoberezhnoyi Ukrayiny. Vinnitsya: Arbat, 292 p. (in Ukrainian)

DIAS T., CLEMENTE A., MARTINS-LOUÇÃO M.A., SHEPPARD L., BOBBINK R., CRUZ C. (2014). Ammonium as a driving force of plant diversity and ecosystem functioning: observations based on 5 years’ manipulation of N dose and form in a Mediterranean ecosystem. PLoS ONE, 9(4): e92517.

DOBROVOLSKIY I.A. (1979). Ekologo-biogeocenoticheskie osnovy optimizacii tehnogennyh landshaftov stepnoy zony Ukrainy putem ozeleneniya i oblesneniya (na primere Krivorojskogo jelezorudnogo basseina). Dissertation doctor of biological sciences degree. Dnepropetrovsk, 240 p. (in Russian)

DOLINA О.О., SMETANA О.М. (2014). Territorial pattern and classification of soils of Kryvyi Rih Iron-Ore Basin. Visn. Dnipropetr. Univ. Ser. Biol. Ekol., 22(2): 161–168. (in Ukrainian)

EKOLOGICHESKIE osnovy rekultivacii zemel (1985). Chernova N.M. (ed.). M.: Science, 181 p. (in Russian)

ETEREVSKA L.V. (1977). Recultivation of lands. Kiev Urozhai, 128 p.

FORKUOR G., HOUNKPATIN O.K.L., WELP G., THIEL M. (2017). High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE, 12(1): e0170478.

FRIDLAND V.M. (1984). Struktury pochvennogo pokrova mira. Mysl’, Moscow (in Russian)

GILLHAUSSEN P., RASCHER U., JABLONOWSKI N.D., PLIICKERS C., BEIERKUHNLEIN C., TEMPERTON V.M. (2014). Priority Effects of Time of Arrival of Plant Functional Groups Override Sowing Interval or Density Effects: A Grassland Experiment. PLoS ONE, 9(l):e86906.

GOLUBETS M.A., MARYSKEVICH O.G., KROK B.O. (2003). Ecological potential of terran ecosistems. Lviv: Polly, 180 p. (in Ukrainian)

GROENENDYK D.G., FERRE T.P., THORP K.R., RICE A.K. (2015). Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function. PLoS ONE, 10(6): e0131299.

HENGL T., DE JESUS J.M., MACMILLAN R.A., BATJES N.H., HEUVELINK G.B.M., RIBEIRO E. (2014) SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE, 9(8): e105992.

HENGL T., MENDES DE JESUS J., HEUVELINK G.B.M., RUIPEREZ GONZALEZ M., KILIBARDA M., BLAGOTIC A. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2): e0169748.

HOLLAND E.P., AEGERTER J.N., DYTHAM C., SMITH G.C. (2007). Landscape as a Model: The Importance of Geometry. PLoS Comput Biol, 3(10): e200.

JUNFU D., XIAOYONG C., SHUPING W., FANG W., ZHE P., NING X., GUOQIANG Z., SHIPING W. (2016). Changes in Biomass and Quality of Alpine Steppe in Response to N & P Fertilization in the Tibetan Plateau. PLoS ONE, 11(5): e0156146.

MOSYAKIN S.L., FEDORONCHUK M.M. (1999). Vascular Plants of Ukraine. A nomenclature Checklist. Kiev, 345 p.

NAZARENKO I.I., POLCHINA S.M., NIKORYCH V.A. (2004). Gruntoznavstvo. Knygi-ХХІ, Chernivtsy (in Ukrainian)

PENG Y., XIONG X., ADHIKARI K., KNADEL M., GRUNWALD S., GREVE M.H. (2015). Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra. PLoS ONE, 10(11): e0142295.

SCHIRRMANN M., GEBBERS R., KRAMER E., SEIDEL J. (2011). Soil pH Mapping with an On-The-Go Sensor. Sensors, 11, 573–598.

SMETANA A.N., JAROTCHUK J.V., DOLINA A.A., MYKHAILENKO I.L. (2012). Spatial differentiation of post-industrial landscape ecological potential (waste dump of “pershotravnevyi” quarry of jsc “northern mining combine plant”). Questions of bioindication and ecology, 17(1): 34–54. (in Ukrainian)

SMETANA N.G., MAZUR A.E., KRASOVA O.O. (1997). Sintaksonomiya rastitelnosti zhelezorudnyh otvalov Krivbassa. «Biologicheskaya rekultivaciya narushennyh zemel»: mat. mezhd. sovesh. Ekaterinburg, 280: 215–219. (in Russian)

SMETANA O.M., DOLINA O.O., YAROSHCHUK Y.V., KRASOVA O.O., RUDIUK D.O. (2013). Development of the ingulets regional ecocorridor: problems and perspectives. Ukr. Bot. J., 70(4): 457–466. (in Ukrainian)

SUH J., LEE H., CHOI Y. (2016). A Rapid, Accurate, and Efficient Method to Map Heavy Metal-Contaminated Soils of Abandoned Mine Sites Using Converted Portable XRF Data and GIS. Int. J. Environ. Res. Public Health, 13: 1191.

TRUBETSKOY K.N., POTAPOV M.G., VINNITSKY K.E., MEL’NIKOV N.N. (1994). Otkrytye gornye raboty: spravochnik (Open Pit Mining: Manual). M.: Gornoe byuro, 500 p. (in Russian).

TYCHONENKO D.G. (2001). Do pytannya pro klasifikatsiju gruntiv Ukrainy. Gruntoznavstvo, 1(1–2): 15–22 (in Ukrainian)

VTOROV P.P., DROZDOV N.N. (2001). Biogeografiya: Ucheb. dlya stud. vy`ssh. ucheb. zavedenij. M.: VLADOS-PRESS, 304 p. (in Russian)

WANG JH, LI FR, DONG LH. (2018). Additive aboveground biomass equations based on different predictors for natural Tilia Linn. The Journal of Applied Ecology, 29: 3685–3695.

XIAO R., JIANG D., CHRISTAKOS G., FEI X., WU J. (2016). Soil Landscape Pattern Changes in Response to Rural Anthropogenic Activity across Tiaoxi Watershed, China. PLoS ONE, 11(11): e0166224.

YAO R., YANG J., WU D., XIE W., GAO P., JIN W. (2016). Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys. PLoS ONE, 11(5): e0153377.

ZAITSEV G.N. (1984). Matematicheskaya statistika v eksperimentalnoy botanike. Moscow.: Nauka, 424 p. (in Russian)

ZHANG L., YU D., SHI X., XU S., XING S., ZHAO Y. (2014). Effects of Soil Data and Simulation Unit Resolution on Quantifying Changes of Soil Organic Carbon at Regional Scale with a Biogeochemical Process Model. PLoS ONE, 9(2): e88622.

ZHANG Q., BUYANTUEV A., LI F.Y., JIANG L., NIU J., DING Y., KANG S., MA W. (2017). Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecol Evol., 7:1605–1615.

ZVONKOVA T.V. (1970). Prikladnaya geomorfologiya. Moscow: Vyssh. shk., 271 p. (in Russian)

Published

2019-12-20

How to Cite

PRISYAZHNYUK, T., DOLINA, O., & BONDARENKO, A. (2019). Estimation of the degree of industrial landscapes restoration based on biomass vegetation characteristics and three-dimensional soil cover modeling. CHORNOMORSKI BOTANICAL JOURNAL, 15(4), 351–361. https://doi.org/10.32999/ksu1990-553X/2019-15-4-4