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ABSTRACT 
Question: How does the moss Atrichum undulatum affect changes in the 
NH4

+ and NO3
– content in the soil under different ecological conditions of 

the Ukrainian Roztochchya forest ecosystems?  
Location: Ukrainian Roztochchya.  
Methods: field research in established plots with different ecological indicators.  
Nomenclature: Virchenko & Nyporko 2022.  
Results: The differences in the N mineral forms content under the moss 
Atrichum undulatum depending on its growth location in forest ecosystems 
were established. It was found that in summer, in areas of old-growth forest 
under more favorable soil microconditions, the amount of NH4

+ and NO3
– 

under moss was higher compared to areas of felling and recreation, which is 
probably caused by more active fixation and exchange of N with the 
participation of microbiota and by leaching of mineral compounds from the 
brown part of turf. It was established that in all areas of forest ecosystems, 
the NH4

+ content under moss was higher than in soil without turfs. However, 
the amount of the NO3

– under turf in the reserve area (19,5±0,6 mg/kg  
d. s.) and in the recreation area (17,1±0,5 mg/kg d. s.) was lower than that 
without plants (20,3±0,7 mg/kg d. s. and 18,7±0,8 mg/kg d. s., respectively), 
which probably indicates its more active absorption by the gametophyte 
under higher moisture supply of soil than in the felling. It was determined 
that in xeromorphic conditions of felling, extreme indicators of insolation 
and water-thermal regime of the soil surface layer caused a significant 
decrease in the NH4

+ and NO3
– content in the substrate without turfs. Under 

the turf in the felling zone, the temperature was lower and the humidity was 
higher, which contributed to the functional activity of microbiota and 
increasing in the amount of N mineral compounds. The pH value under moss 
was more acidic compared to soil without turfs, and probably created opti-
mal conditions for N fixation and mineralization, which led to greater 
amount of, particularly NH4

+. Apparently, the effect of ecological factors on 
the NH4

+ and NO3
– content had comprehensive character: both the pH value 

and the hydro-thermal regime of the microenvironment were affected.  
Conclusion. In various ecological conditions of the reserve and disturbed of 
forest ecosystems moss cover changing the hydrothermal and chemical char-
acteristics of the soil promotes the activation of redox reactions associated 
with N transformation (increasing of the NH4

+ and NO3
– content) with par-

ticipation of soil microbiota. 
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ВСТУП 
Унікальні еколого-фізіологічні особливості бріофітів дають змогу по-іншому, ніж 

судинні рослини, впливати на колообіг елементів, води та енергії. Вони відіграють 

вагому роль у підтримці функціонування наземних екосистем, їхній динаміці, стабіль-

ності завдяки секвестрації поживних речовин у дернинці й повільному вивільненні їх у 

ґрунт (Turetsky 2003, Karpinets et al. 2014, 2017, Siwach et al. 2021) та формуванні орга-

но-акумулятивного шару під моховим покривом (Kyyak 2016, Eldridge et. al. 2023). Про-

цеси десикації-регідратації мохів, що сприяють вилуговуванню лабільних (вуглецевих) 

субстратів, можуть збільшувати потоки ресурсів й стимулювати колообіг, зокрема 

нітрогену, у ґрунті (Slate et al. 2019). Показано, що мохи позитивно впливають на коре-

неву зону лісу завдяки збагаченню мікросередовища ґрунту поживними речовинами 

(Nakatsubo 1997, Liu et al. 2020, Glime 2024). 

Мінералізація нітрогену у ґрунті є ключовою частиною біологічного процесу, 

який контролює циклічність елемента усередині екологічних систем, коли органічні 

форми перетворюються на неорганічні – катіони амонію та нітрат-аніони (Glime 

2024). Конверсія нітрогену у сполуки з різним ступенем його окиснення є важливим 

механізмом продуктивності мохоподібних в екосистемах (Hu et al. 2014, Lindo & 

Griffith 2017, Siwach et al. 2023) та істотно залежить від активності різних 

фізіологічних груп мікроорганізмів.  

Розвиток бріофітного покриву впливає на фізико-хімічні властивості ґрунту, 

регулює водний баланс й температурний режим (Gornall et al. 2007, Porada 2016, 

Glime 2019, Xiao & Bowker 2020, Lobachevska et al. 2023) та змінює рН реакцію 

мікросередовища (Glime 2006, Hawkins et al. 2017, Kyyak et al. 2020). Під дернинкою 

моху знижуються показники кислотності через вимивання протонів H+ у ґрунтовий 

розчин, які вивільняються завдяки високій катіонообмінній здатності клітинних 

стінок. Реакцію середовища у бік підкиснення визначає і ступінь дисоціації вільних 

органічних кислот, які мають у складі кислі функціональні групи, що вилуговуються 

із мохових дернинок. 

Зміни едафо-кліматичних чинників у поверхневому шарі ґрунту завдяки 

мохоподібним безпосередньо впливають на чисельність, функціональну здатність 

мікробіоти та різноманітність її угруповань (Gornall et al. 2007, Kyyak et al. 2020, 

Koranda & Michelsen 2021, Siwach et al. 2021, 2023, Glime 2024, Xiao et al. 2024), що 

сприяє мінералізації, зокрема нітрогену, до розчинних форм елементів живлення 

(NH4
+ та NO3

–), доступних для поглинання іншими рослинами (Glime 2017, Karpinets 

& Lobachevska 2024). 

Мета роботи – визначити вплив мохового покриву Atrichum undulatum на зміни 

вмісту катіонів амонію та нітрат-аніонів залежно від мікрокліматичних та едафічних 

умов середовища у заповідних та порушених лісових екосистемах.  

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕНЬ 

Об’єкт досліджень – лісовий ґрунт, зразки якого відбирали під дернинками 

епігейного виду моху Atrichum undulatum та без рослин, на дослідних ділянках ста-

ровікового букового лісу (територія Природного заповідника «Розточчя») та антро-

погенно змінених лісових екосистем: у зоні стаціонарної рекреації «Верещиця» і 

вирубки буково-дубового лісу (Яворівський національний природний парк).  

Для визначення впливу мохового покриву на вміст мінеральних сполук нітро-

гену у ґрунті відбір проб здійснювали протягом літа (червень, липень, серпень) в 

умовах істотних несприятливих змін мікрокліматичних та едафічних умов на 

досліджуваних територіях (Karpinets & Lobachevska 2024). 
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На території повного заповідання структура рослинності бучини представлена 

переважно добре розвинутим різновіковим підростом із високим показником повноти 

деревостану, що створює значне затінення для приземного ярусу лісу. У зоні стаціонар-

ної рекреації підлісок займає невелику площу, оскільки наявні порушені ділянки, що 

виникли через витоптування та облаштування відпочинкових місць. На території 

вирубки зменшення щільності деревостану та проєктивного покриття підліску, зокрема 

кущів та молодих дерев, зумовлені активною антропогенною діяльністю, внаслідок чого 

утворилися великі площі відкритих ксероморфних ділянок із значним впливом сонячної 

радіації та підвищеним вітровим режимом. Ці чинники безпосередньо впливають на 

водозабезпечення ґрунту та його температурні показники. 

Оскільки на території лісових екосистем моховий покрив епігейних видів сфор-

мований на ділянках, де лісова підстилка практично відсутня (Lobachevska & Karpinets 

2024), вважаємо, що її вплив на вміст мінеральних форм нітрогену під дернинами 

A. undulatum є мінімальним.  

На кожній дослідній ділянці площею ~ 10 м2 на території заповідної та поруше-

них лісових екосистем визначено по три локалітети розміром 1 м2 проективного 

покриття епігейного моху A. undulatum. Відбір зразків ґрунту проводили влітку 2024 

року методом конверта: на кожній ділянці у 5-ти місцях відбирали по 

5 індивідуальних проб ризоїдального шару ґрунту під мохом та без дернинок зав-

глибшки до 3 см (до 100 г). Після перемішування проб відбирали середню, яку вико-

ристовували для подальшого аналізу. 

Для визначення вмісту нітратів у ґрунті за методом Грандваль-Ляжу використо-

вували дисульфофенолову кислоту (Nikolaychuk & Bilyk 1997). Попередньо зразки 

випарювали до цілковитої сухості на водяній бані, а потім приливали реактив. Після 

нейтралізації лугом кислого розчину, вимірювали оптичну густину дослідних зразків 

на спектрофотометрі Specord 210 Plus за довжини хвилі 240 нм. 

Для визначення вмісту катіонів амонію у поверхневому шарі ґрунту використо-

вували реактив Неслера. Попередньо ґрунт екстрагували 1н розчином KCI. До 

екстрактів із отриманих зразків додавали сегнетову сіль (K-Na-виннокислий) для 

зв’язування Са2+ та Mg2+, оскільки катіони cпричиняють опалесценцію розчину. 

Оптичну густину в отриманих розчинах із реактивом вимірювали за довжини хвилі 

415 нм (Nikolaychuk & Bilyk 1997). 

Вміст вологи у верхньому шарі ґрунту завглибшки до 3 см на досліджуваних 

ділянках заповідних та антропогенно порушених лісових екосистем визначали за 

С.М. Польчиною, зважуючи та обчислюючи її у відсотках від маси абсолютно сухої 

речовини (Polchina 1991). Температуру повітря вимірювали ртутними термометрами, 

інтенсивність освітлення на дослідних ділянках – люксметром Ю–116. Актуальну 

кислотність (pH) визначали у водній витяжці за співвідношення ґрунт : вода (1:5) із 

використанням іонометра Thermo Orion (model 320) (Nikolaychuk & Bilyk 1997).  

Отримані дані опрацьовували за допомогою пакетів прикладних програм: 

Microsoft Eхсel та Statistica. Аналіз достовірності різниці між варіантами проводили за 

t-критерієм Стьюдента, яку вважали статистично значущою за p<0.05. Досліди повто-

рювали тричі.  

РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ ТА ЇХ ОБГОВОРЕННЯ  

Мінералізація нітрогену у ґрунті супроводжується деполімеризацією високо-

молекулярних сполук, зокрема білків, до неорганічних форм – катіонів амонію та 

нітрат-аніонів. Сумарна кількість мінералізованих сполук є діагностичним критерієм 

наявності у ґрунтовому середовищі доступного N.  
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Найбільш динамічною ланкою у трансформації нітрогену є амоніфікація, яка є 
першою стадією мінералізації органічних нітрогенвмісних сполук з кінцевим про-
дуктом ферментативного процесу – аміаком.  

Окиснення аміаку (іону амонію) до нітратів є наступним етапом мінералізації. 
Процес нітрифікації у ґрунті забезпечують аеробні хемотрофні нітрифікатори, які вико-
ристовують для життєдіяльності енергію окиснення NH4

+ до NO3
–, та гетеротрофні 

організми-нітрифікатори, які безпосередньо окиснюють органічні сполуки N до нітритів 
та нітратів (van Kessel еt al. 2015, Paśmionka еt al. 2021). Встановлено, що у лісових 
екологічних системах з кислою реакцією у ґрунті значну роль у мінералізації нітрогену 
відіграє гетеротрофна нітрифікація (Zhang et al. 2013, Paśmionka еt al. 2021). 

На кількість нітрат-аніонів у ґрунті впливають і процеси денітрифікації, які 
здійснюють як аеробні, так і анаеробні мікроорганізми-денітрифікатори (He еt al. 
2021, Xuejiao еt al. 2021). Мікробіота відновлює іони NO3

– до молекулярного N, 
унаслідок чого вміст наявного нітратного нітрогену у ґрунті зменшується.  

Окрім інтенсивності трансформації нітрогенвмісних сполук завдяки активності 
мікробіоти, вміст катіонів амонію та нітрат-аніонів у ґрунті залежить від процесів 
вилуговування. Негативні нітрат-аніони не поглинаються ґрунтовими колоїдами, а 
навпаки, відштовхуються від них та можуть вимиватись у глибші шари ґрунту завдяки 
здатності до мобільності та постійно переміщатися по його профілю як горизонтально, 
так і вертикально (Olness еt al. 2001, Sponseller еt al. 2016). Катіони амонію із позитив-
ним зарядом, порівняно з нітратами, добре адсорбуються негативно зарядженими 
колоїдними частинками, що зумовлює їхню відносну нерухомість у ґрунті та стійкість 
до вилуговування по ґрунтовому профілю (Wang еt al. 2020).  

За результатами проведених досліджень встановлено, що влітку на ділянках 
заповідної території кількість N-NH4

+ під мохом була вищою (273,4±9,7 мг/кг сухого 
ґрунту (с. ґ.), ніж у ґрунті без дернин (231,5±10,0 мг/кг с. ґ.), та найбільшою, 
порівняно з порушеними зонами: вирубкою (210,2±13,1 мг/кг с. ґ.) та рекреаційним 
навантаженням (254,3±11,3 мг/кг с. ґ.). Вочевидь, в умовах старовікового лісу у 
затінених мезофітних місцевиростаннях Atrichum undulatum за інтенсивності 
освітлення до 40–50 тис. лк найвищі показники вологості (13,3±0,3%) ґрунту під 
бріофітним покривом були одними із визначальних факторів, які впливали на 
функціональну здатність деструкторів-амоніфікаторів (TABLE 1, FIGURE 1).  

Визначено, що на ділянках бучини значення рН водного ґрунтового розчину 
під мохом було нижчим, аніж без нього: різниця становила 0,3 од. та була найбіль-
шою, порівняно із іншими досліджуваними територіями. Це може свідчити про те, 
що в умовах вищого (79,0±5,2%) вологозабезпечення дернини, ймовірно, активно 
вилуговувалися у ґрунтовий розчин іони Н+ як вивільнені з екстрацелюлярного про-
стору клітинних стінок, так і внаслідок дисоціації водорозчинних органічних кислот, 
які циркулюють у гаметофіті моху із високим вмістом вологи (Glime 2006). 

Слід зазначити, що із мохового покриву можуть вимиватись і неорганічні фор-
ми нітрогену. Оскільки у бурій старіючій частині гаметофіту, яка інтегрована із 
ґрунтом, відбуваються процеси мінералізації, при тому із вологого середовища дер-
нини продукти розпаду органічних сполук нітрогену (аміак та нітрати) можуть 
потрапляти у ризоїдальний шар ґрунту (Karpinets & Lobachevska 2025).  

На досліджуваних ділянках лісових екосистем визначена кількість амонію у 
субтраті, вочевидь, обумовлена і фізіологічною активністю вільноживучих діазо-
трофів-нітрогенфіксаторів, які, завдяки каталітичним реакціям нітрогенази, беруть 
участь у відновленні атмосферного N до катіонів амонію. Встановлено, що гетеро-
трофна швидкість реакцій за участі ензиму, визначена у температурному діапазоні 
від 5 до 25 °C, показала експоненційне збільшення із підвищенням температури 
(Diáková et al. 2016) та зменшувалась лінійно зі зниженням водного потенціалу ґрун-
ту (Michelsen 2012).  
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ТАБЛИЦЯ 1. Мікрокліматичні та едафічні умови місцевиростань A. undulatum влітку на 

досліджуваних територіях заповідної (старовіковий буковий ліс) і антропогенно змінених (зони 

рекреації та вирубки) лісових екосистем Українського Розточчя 

TABLE 1. Microclimatic and edaphic conditions of A. undulatum localities in summer in the studied 

territories of protected (old-growth beech forest) and anthropogenically changed (recreation and 

felling zones) forest ecosystems in the Ukrainian Roztochchya 

 

Показники 

Територія старовікових 

букових лісів  

Зона стаціонарної 

рекреації 

 

Зона вирубки  

 

Діапазон інтенсивності освітлення,  

тис. лк 

40–50 55–60 100–110 

 

 

Температура, оС 

повітря на 

поверхні мохової 

дернинки 

25,1±0,8 26,9±2,3  29,3±1,0* 

ґрунту під мохом 21,2±0,6 21,8±1,4  25,8±1,0* 

ґрунту без моху 21,6±1,0 22,4±2,1  26,9±1,3* 

 

Вміст вологи, % 

повітря на 

поверхні мохової 

дернинки 

31,0±2,3 29,5±2,2  22,0±1,2* 

у дернинці моху 79,0±5,2 68,3±5,5  49,5±4,2* 

у ґрунті під мохом  13,3±0,3** 11,7±0,9   9,3±0,4* ** 

ґрунту без моху 11,9±0,3 10,4±1,9 7,8±0,2* 

рН значення 

ґрунтового 

розчину 

ґрунту під мохом 6,3±0,1 5,9±0,1* 6,2±0,1 

ґрунту без моху 6,6±0,2 6,1±0,1 6,4±0,1 

Примітка: * – різниця статистично достовірна, порівняно з показниками в умовах старовікового 

букового лісу, за p<0.05; ** – різниця статистично достовірна, порівняно з показниками у ґрунті без 

мохового покриву, за p<0,05. 

Comments: * – the difference is statistically significant, compared to the indicators in the conditions of the 

old-growth beech forest, at p<0.05; ** – the difference is statistically significant, compared to the indicators 

in the soil without moss cover, at p<0.05. 

 

Літературні дані щодо впливу величини рН водного ґрунтового розчину на 

активність нітрогенази є неоднозначними. Наявна інформація про те, що високі 

показники кислотності можуть обмежувати чи гальмувати швидкість реакцій за 

участі ензиму (Chapin & Bledsoe 1992), що призводить до зменшення чисельності та 

функціональної здатності вільноживучих діазотрофів. Проте відомо, що фіксація 

молекулярного N відбувалась навіть і за pH 3,2–3,4 (Diáková et al. 2016). Тобто, 

діапазон активності мікробіоти у ґрунті щодо значень рН є досить широким, втім 

оптимум для її фізіологічної здатності, ймовірно, був на рівні визначених нами вели-

чин рН, оскільки встановлено вищу кількість амонійного нітрогену під дернинами. 

Зазначимо, що дія на показники вмісту мінеральної форми, мабуть, є комплексною і 

залежить від водно-термічних характеристик ґрунту.  

Встановлено, що на відкритих ділянках вирубки значні показники інсоляції 

(100–110 тис. лк) зумовили формування екстремального температурного 

(29,3±1,0 оС) режиму повітря, що спричинило швидке нагрівання (до 26,9±1,3 оС) 

поверхневого незадернованого шару ґрунту та втрату його вологи (7,8±0,2 %). За 

таких умов вміст катіонів амонію у ґрунті без бріофітного покриву (196,1±9,9 мг/кг 

с. ґ.) був меншим, аніж під A. undulatum (210,2±13,1 мг/кг с. ґ.), та, порівняно з 

іншими територіями, ймовірно, внаслідок його випаровування (TABLE 1, FIGURE 1). 

Показники кислотності під мохом були вищими, ніж у субстраті без дернинок, та у 

межах оптимуму для фізіологічної активності мікроорганізмів, що здійснюють 

трансформацію нітрогену. Втім визначальними факторами, що вплинули на змен-

шення кількості катіонів амонію, а також і нітрат-аніонів, ймовірно, були високий 

температурний режим та дефіцит вологи у ґрунті. 
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РИСУНОК 1. Вміст катіонів амонію під мохом A. undulatum та незадернованому ґрунті залежно від 

умов лісових екосистем Українського Розточчя: * – різниця статистично достовірна, порівняно з 

показниками у ґрунті без мохового покриву, за p<0.05; ** – різниця статистично достовірна, 

порівняно з показниками в умовах старовікового букового лісу, за p<0.05. 

FIGURE 1. The content of ammonium cations under A. undulatum moss and unsodded soil depending 

on the conditions of the Ukrainian Roztochchya forest ecosystems: * – the difference is statistically 

significant, compared to the indicators in the soil without moss cover, at p<0.05; ** – the difference is 

statistically significant, compared to the indicators in the conditions of the old-growth beech forest, at 

p<0.05. 

За результатами проведеного аналізу встановлено, що на заповідній та антро-

погенно змінених територіях кількість нітратного нітрогену у ґрунті на порядок 

була меншою, ніж амонійного (FIGURE 1, 2). Показано, що зазвичай у лісових еко-

системах концентрація катіонів амонію у ґрунтовому розчині значно вища, ніж 

нітратів (Cui & Song 2007), що можна інтерпретувати особливістю окисненої фор-

ми N до мобільності та вилуговування у глибші шари ґрунту (Olness еt al. 2001, 

Sponseller еt al. 2016, Wang еt al. 2020), а також подальшим відновленням, зокрема 

до молекулярного N, під час процесу денітрифікації. Окрім того, припускають, що 

значне переважання NH4
+ над NO3

– у ґрунтовому водному розчині може бути зумо-

влене, зокрема, мікробним поглинання нітратів та меншою доступністю амонійно-

го нітрогену, оскільки автотрофні нітрифікатори не можуть успішно конкурувати 

за катіони з гетеротрофними мікроорганізмами (Cui & Song 2007). Варто зазначити, 

що автотрофна нітрифікація є двостадійним процесом, який опосередкований 

окисненням бактеріями аміаку до нітритів та нітритів до нітратів. Натомість гете-

ротрофна нітрифікація супроводжується повним окисненням аміаку до нітрат-

аніонів у одному організмі з використанням джерел органічного карбону (Van 

Kessel еt al. 2015, Vijayan еt al. 2021).  

Визначено, що у спекотний літній період на відкритих ділянках вирубки із висо-

кою інсоляцією та нестабільним водним режимом кількість нітратів у ґрунті як під 

моховими дернинками (10,3±0,4 мг/кг с. ґ.), так і без них (8,9±0,2 мг/кг с. ґ.) була най-

меншою, порівняно з іншими досліджуваними територіями, що, можливо, зумовлено 

сповільненими процесами нітрифікації за високих температурних показників та низь-

кого водного режиму ґрунту (TABLE 1, FIGURE 2). Оскільки ця зона характеризується 

найбільш ксероморфними мікроумовами влітку, то, вочевидь, фізіо- 
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РИСУНОК 2. Вміст нітрат-аніонів під мохом A. undulatum та незадернованому ґрунті на дослідних 

ділянках лісових екосистем Українського Розточчя: а* – різниця статистично достовірна, 

порівняно з показниками в умовах старовікового букового лісу, за p<0.05; б* – різниця 

статистично достовірна, порівняно з показниками у ґрунті без мохового покриву, за p<0.05. 

FIGURE 2. The nitrate anion content under A. undulatum moss and unsodden soil on experimental plots 

of the Ukrainian Roztochchya forest ecosystems: a* – the difference is statistically significant, compared 

to the indicators in the conditions of the old-growth beech forest, at p<0.05; б* – the difference is 

statistically significant, compared to the indicators in the soil without moss cover, at p<0.05. 

логічна активність мікроорганізмів-нітрифікаторів була найнижчою. Водночас під 

дернинкою A. undulatum, ймовірно, окиснення катіонів амонію відбувалось інтен-

сивніше, ніж у незадернованому ґрунті, про що свідчить вища в 1,2 раза кількість 

NO3
–. 

Виявлено, що на ділянках бучини та рекреації, порівняно із вирубкою, показ-

ники вмісту нітратів у ґрунті без мохового покриву перевищували їхні показники під 

A. undulatum. Вочевидь, вищий вміст вологи під дернинками на цих ділянках сприяв 

насамперед активнішому поглинанню нітрат-аніонів та їхньому висхідному транс-

порту по центральному провідному пучку стебла моху до апікальних меристем 

пагонів, що і зумовило зменшення кількості мінеральної форми (FIGURE 2). Визначе-

но, що, завдяки поглинанню рослинами нітратів, рівень кислотності у ґрунті зни-

жується (Custos et al. 2020), хоча сам процес нітрифікації супроводжується підкис-

ненням субстрату через збільшення кількості вивільнених протонів під час окиснен-

ня аміаку (Cytryn et al. 2012). Тобто ці процеси можуть певною мірою нівелювати 

зміну кислотності, створюючи таким чином буферний ефект. 

Встановлено, що рівень нітрифікації ґрунту є відносно низьким у кислих ґрунтах 

і підвищується зі збільшенням показників pH водного ґрунтового розчину (Neina 

2019). Проте є вагомі докази того, що хемолітоавтотрофна мікробіота бере активну 

участь у процесах нітрифікації й у ґрунтах з низьким значенням рН (Tarre & Green 

2004, Zhang et al. 2013). Відомо про філогенетичне положення цих мікроорганізмів у 

кислому ґрунтовому середовищі та механізми, які забезпечують їхню фізіологічну 

активність в таких умовах (De Boer & Kowalchuk 2001). Тобто діапазон показників 

кислотності для функціональної здатності мікробіоти, яка пов’язана з окисними реак-

ціями, є досить широким, що може охоплювати екологічні системи від кислих ґрунтів 

до озер із значним вмістом карбонатів (Ni et al. 2023). 

Таким чином, в умовах заповідної та антропогенно порушених територій зміна 

екологічних умов ґрунту завдяки фізіологічним особливостям мохів та їхній здат-
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ності регулювати водно-термічний режим під дерниною сприяє збільшенню чисель-

ності й функціональній активності мікробіоти, ферментні системи якої каталізують 

низку послідовних окисно-відновних реакцій, пов’язаних із фіксацією й обміном N, 

що має першочергове значення, оскільки трансформація елемента у його глобально-

му циклі (амоніфікація, нітрифікація тощо) впливає на продуктивність лісових 

екосистем.  

ВИСНОВКИ 

Отже, у сприятливіших умовах гідротермічного режиму мохових дернинок та 

ґрунту під ними заповідної зони під A. undulatum активніше відбувалась міне-

ралізація органічних сполук нітрогену й процеси його фіксації, поглинання окисне-

ної форми, а також вилуговування NH4
+ та NO3

– із бурої частини гаметофіту, що 

підвищувало їхній вміст у ризоїдальному шарі ґрунту. 

Вплив нижчих значень рН водного ґрунтового розчину та показників гідро-

термічного режиму мікросередовища під мохом мав загалом комплексний характер 

на мікробіологічну активність ґрунту, що зумовлювало мінливість вмісту катіонів 

амонію та нітрат-аніонів. 

Визначено, що у ксероморфних умовах вирубки екстремальна інсоляція, 

дефіцит вологи та висока температура повітря і поверхневого шару ґрунту спричи-

нили значне зменшення вмісту амонію та нітратів у незадернованому субстраті 

внаслідок гальмування перебігу біохімічних реакцій метаболізму нітрогену та при-

швидшили випаровування NH3
+. Під моховою дернинкою на порушеній території 

температура була нижчою, а вологість вищою, що і сприяло більшій кількості як 

амонійного, так і нітратного N.  
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Карпінець, Л.І., Лобачевська, О.В., Яворська, Г.В. (2025). Вплив мохового покриву на вміст 

мінеральних сполук нітрогену залежно від мікрокліматичних та едафічних чинників середовища у 

лісових екосистемах Українського Розточчя. Чорноморський ботанічний журнал 21 (4): 354–364. 
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Встановлено відмінності вмісту мінеральних форм N під мохом Atrichum undulatum (залежно від його 

місцевиростань у лісових екосистемах. Виявлено, що влітку на ділянках старовікового лісу у сприят-

ливіших мікроумовах ґрунту кількість NH4
+ та NO3

– під мохом була більшою, порівняно із ділянками 

вирубки та рекреації, що, ймовірно, зумовлено активнішими фіксацією й обміном N за участі мікро-

біоти та вимиванням мінеральних сполук із бурої частини дернини. Встановлено, що на усіх ділянках 

лісових екосистем вміст NH4
+ під мохом був більшим, аніж у незадернованому ґрунті. Втім кількість 

NO3
– під дернинами на заповідній території (19,5±0,6 мг/кг с. ґ.) та у зоні рекреації (17,1±0,5 мг/кг с. 

ґ.) була меншою, ніж без рослин (20,3±0,7 мг/кг с. ґ. та 18,7±0,8 мг/кг с. ґ. відповідно), що, ймовірно, 

свідчить про активніше його поглинання гаметофітом за вищого, ніж на вирубці, вологозабезпечення 

ґрунту. Визначено, що у ксероморфних умовах вирубки екстремальні показники інсоляції та водно-

термічного режиму поверхневого шару ґрунту спричинили значне зменшення вмісту NH4
+ та NO3

– у 

незадернованому субстраті. Під дерниною у зоні вирубки температура була нижчою, а вологість 

вищою, що і сприяло функціональній активності мікробіоти та збільшенню кількості мінеральних 

сполук N. Рівень рН під мохом було кислішим, порівняно із незадернованим ґрунтом, та, ймовірно, 

створювало оптимальні умови для фіксації та мінералізації N, що зумовлювало більшу кількість, 

зокрема NH4
+. Мабуть, дія екологічних чинників на вміст NH4

+ та NO3
– загалом мала комплексний 

характер: впливали як показники значення рН, так і гідротермічного режиму мікросередовища.  

 

Ключові слова: мох Atrichum undulatum, NH4
+ та NO3

–, водно-термічний режим, величина рН. 


